Large language models for the mental health community: framework for translating code to care.

IF 23.8 1区 医学 Q1 MEDICAL INFORMATICS Lancet Digital Health Pub Date : 2025-01-07 DOI:10.1016/S2589-7500(24)00255-3
Matteo Malgaroli, Katharina Schultebraucks, Keris Jan Myrick, Alexandre Andrade Loch, Laura Ospina-Pinillos, Tanzeem Choudhury, Roman Kotov, Munmun De Choudhury, John Torous
{"title":"Large language models for the mental health community: framework for translating code to care.","authors":"Matteo Malgaroli, Katharina Schultebraucks, Keris Jan Myrick, Alexandre Andrade Loch, Laura Ospina-Pinillos, Tanzeem Choudhury, Roman Kotov, Munmun De Choudhury, John Torous","doi":"10.1016/S2589-7500(24)00255-3","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) offer promising applications in mental health care to address gaps in treatment and research. By leveraging clinical notes and transcripts as data, LLMs could improve diagnostics, monitoring, prevention, and treatment of mental health conditions. However, several challenges persist, including technical costs, literacy gaps, risk of biases, and inequalities in data representation. In this Viewpoint, we propose a sociocultural-technical approach to address these challenges. We highlight five key areas for development: (1) building a global clinical repository to support LLMs training and testing, (2) designing ethical usage settings, (3) refining diagnostic categories, (4) integrating cultural considerations during development and deployment, and (5) promoting digital inclusivity to ensure equitable access. We emphasise the need for developing representative datasets, interpretable clinical decision support systems, and new roles such as digital navigators. Only through collaborative efforts across all stakeholders, unified by a sociocultural-technical framework, can we clinically deploy LLMs while ensuring equitable access and mitigating risks.</p>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":" ","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/S2589-7500(24)00255-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) offer promising applications in mental health care to address gaps in treatment and research. By leveraging clinical notes and transcripts as data, LLMs could improve diagnostics, monitoring, prevention, and treatment of mental health conditions. However, several challenges persist, including technical costs, literacy gaps, risk of biases, and inequalities in data representation. In this Viewpoint, we propose a sociocultural-technical approach to address these challenges. We highlight five key areas for development: (1) building a global clinical repository to support LLMs training and testing, (2) designing ethical usage settings, (3) refining diagnostic categories, (4) integrating cultural considerations during development and deployment, and (5) promoting digital inclusivity to ensure equitable access. We emphasise the need for developing representative datasets, interpretable clinical decision support systems, and new roles such as digital navigators. Only through collaborative efforts across all stakeholders, unified by a sociocultural-technical framework, can we clinically deploy LLMs while ensuring equitable access and mitigating risks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心理健康社区的大型语言模型:将代码翻译为护理的框架。
大型语言模型(llm)在精神卫生保健方面提供了有前途的应用,以解决治疗和研究方面的差距。通过利用临床记录和记录作为数据,法学硕士可以改善精神健康状况的诊断、监测、预防和治疗。然而,仍然存在一些挑战,包括技术成本、扫盲差距、偏见风险和数据表示方面的不平等。在这个观点中,我们提出了一种社会文化技术方法来解决这些挑战。我们强调了五个关键发展领域:(1)建立全球临床知识库以支持法学硕士培训和测试,(2)设计合乎道德的使用设置,(3)改进诊断类别,(4)在开发和部署过程中整合文化因素,以及(5)促进数字包容性以确保公平获取。我们强调需要开发具有代表性的数据集,可解释的临床决策支持系统,以及数字导航等新角色。只有通过所有利益相关者的合作努力,通过社会文化-技术框架的统一,我们才能在确保公平获取和降低风险的同时临床部署法学硕士。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
41.20
自引率
1.60%
发文量
232
审稿时长
13 weeks
期刊介绍: The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health. The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health. We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.
期刊最新文献
Clinical trials for implantable neural prostheses: understanding the ethical and technical requirements. Large language models for the mental health community: framework for translating code to care. Generative Pre-trained Transformer 4 (GPT-4) in clinical settings. A prospectively deployed deep learning-enabled automated quality assurance tool for oncological palliative spine radiation therapy. Implementation of an automated deep learning-based quality assurance tool for vertebral body identification in radiotherapy planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1