Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.

IF 2.4 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL Medicina-Lithuania Pub Date : 2024-12-23 DOI:10.3390/medicina60122111
Mi Hyun Lim, Jung Ho Jeon, Sun Hwa Park, Byeong Gon Yun, Seok-Won Kim, Dong-Woo Cho, Jeong Hak Lee, Do Hyun Kim, Sung Won Kim
{"title":"Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits.","authors":"Mi Hyun Lim, Jung Ho Jeon, Sun Hwa Park, Byeong Gon Yun, Seok-Won Kim, Dong-Woo Cho, Jeong Hak Lee, Do Hyun Kim, Sung Won Kim","doi":"10.3390/medicina60122111","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background and Objectives</i>: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model. <i>Materials and Methods</i>: hNTSCs were induced to differentiate into either mucosal epithelial or osteogenic cells in vitro. hNTSCs were seeded into polycaprolactone scaffold (three-dimensionally printed) that were implanted into rabbits with maxillary defects. Four weeks later, tissue regeneration was analyzed via histological evaluation and immunofluorescence staining. <i>Results</i>: In vitro, hNTSCs differentiated into both mucosal epithelial and osteogenic cells. hNTSC differentiation into respiratory epithelial cells was confirmed by Alcian Blue staining, cilia in SEM, and increased expression levels of FOXJ1 and E-cadherin through quantitative RT-PCR. hNTSC differentiation into bone was confirmed by Alizarin Red staining, increased mRNA expression levels of BMP2 (6.1-fold) and RUNX2 (2.3-fold) in the hNTSC group compared to the control. Four weeks post-transplantation, the rabbit maxilla was harvested, and H&E, SEM, and immunohistofluorescence staining were performed. H&E staining and SEM showed that new tissue and cilia around the maxillary defect were more prominent in the hNTSC group. Also, the hNTSCs group showed positive immunohistofluorescence staining for acetylated α-tubulin and cytokerin-5 compared to the control group. <i>Conclusions</i>: hNTSCs combined with PCL scaffold enhanced the regeneration of mucosal tissue and bone in vitro and promoted mucosal tissue regeneration in the in vivo rabbit model.</p>","PeriodicalId":49830,"journal":{"name":"Medicina-Lithuania","volume":"60 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11678718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-Lithuania","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/medicina60122111","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objectives: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model. Materials and Methods: hNTSCs were induced to differentiate into either mucosal epithelial or osteogenic cells in vitro. hNTSCs were seeded into polycaprolactone scaffold (three-dimensionally printed) that were implanted into rabbits with maxillary defects. Four weeks later, tissue regeneration was analyzed via histological evaluation and immunofluorescence staining. Results: In vitro, hNTSCs differentiated into both mucosal epithelial and osteogenic cells. hNTSC differentiation into respiratory epithelial cells was confirmed by Alcian Blue staining, cilia in SEM, and increased expression levels of FOXJ1 and E-cadherin through quantitative RT-PCR. hNTSC differentiation into bone was confirmed by Alizarin Red staining, increased mRNA expression levels of BMP2 (6.1-fold) and RUNX2 (2.3-fold) in the hNTSC group compared to the control. Four weeks post-transplantation, the rabbit maxilla was harvested, and H&E, SEM, and immunohistofluorescence staining were performed. H&E staining and SEM showed that new tissue and cilia around the maxillary defect were more prominent in the hNTSC group. Also, the hNTSCs group showed positive immunohistofluorescence staining for acetylated α-tubulin and cytokerin-5 compared to the control group. Conclusions: hNTSCs combined with PCL scaffold enhanced the regeneration of mucosal tissue and bone in vitro and promoted mucosal tissue regeneration in the in vivo rabbit model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicina-Lithuania
Medicina-Lithuania 医学-医学:内科
CiteScore
3.30
自引率
3.80%
发文量
1578
审稿时长
25.04 days
期刊介绍: The journal’s main focus is on reviews as well as clinical and experimental investigations. The journal aims to advance knowledge related to problems in medicine in developing countries as well as developed economies, to disseminate research on global health, and to promote and foster prevention and treatment of diseases worldwide. MEDICINA publications cater to clinicians, diagnosticians and researchers, and serve as a forum to discuss the current status of health-related matters and their impact on a global and local scale.
期刊最新文献
Stem Cells Within Three-Dimensional-Printed Scaffolds Facilitate Airway Mucosa and Bone Regeneration and Reconstruction of Maxillary Defects in Rabbits. Does Robotic Spine Surgery Add Value to Surgical Practice over Navigation-Based Systems? A Study on Operating Room Efficiency. Effects of Pelargonium Sidoides Extract on Apoptosis and Oxidative Stress in Human Neuroblastoma Cells. Impact of Vascular Endothelial Growth Factor on the Shape, Survival, and Osteogenic Transformation of Gingiva-Derived Stem Cell Spheroids. Prevalence and Risk Factors of Osteoporosis: A Cross-Sectional Study in a Tertiary Center.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1