A global kernel estimator for partially linear varying coefficient additive hazards models.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2025-01-01 Epub Date: 2025-01-09 DOI:10.1007/s10985-024-09645-8
Hoi Min Ng, Kin Yau Wong
{"title":"A global kernel estimator for partially linear varying coefficient additive hazards models.","authors":"Hoi Min Ng, Kin Yau Wong","doi":"10.1007/s10985-024-09645-8","DOIUrl":null,"url":null,"abstract":"<p><p>We study kernel-based estimation methods for partially linear varying coefficient additive hazards models, where the effects of one type of covariates can be modified by another. Existing kernel estimation methods for varying coefficient models often use a \"local\" approach, where only a small local neighborhood of subjects are used for estimating the varying coefficient functions. Such a local approach, however, is generally inefficient as information about some non-varying nuisance parameter from subjects outside the neighborhood is discarded. In this paper, we develop a \"global\" kernel estimator that simultaneously estimates the varying coefficients over the entire domains of the functions, leveraging the non-varying nature of the nuisance parameter. We establish the consistency and asymptotic normality of the proposed estimators. The theoretical developments are substantially more challenging than those of the local methods, as the dimension of the global estimator increases with the sample size. We conduct extensive simulation studies to demonstrate the feasibility and superior performance of the proposed methods compared with existing local methods and provide an application to a motivating cancer genomic study.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"205-232"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09645-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study kernel-based estimation methods for partially linear varying coefficient additive hazards models, where the effects of one type of covariates can be modified by another. Existing kernel estimation methods for varying coefficient models often use a "local" approach, where only a small local neighborhood of subjects are used for estimating the varying coefficient functions. Such a local approach, however, is generally inefficient as information about some non-varying nuisance parameter from subjects outside the neighborhood is discarded. In this paper, we develop a "global" kernel estimator that simultaneously estimates the varying coefficients over the entire domains of the functions, leveraging the non-varying nature of the nuisance parameter. We establish the consistency and asymptotic normality of the proposed estimators. The theoretical developments are substantially more challenging than those of the local methods, as the dimension of the global estimator increases with the sample size. We conduct extensive simulation studies to demonstrate the feasibility and superior performance of the proposed methods compared with existing local methods and provide an application to a motivating cancer genomic study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分线性变系数加性危害模型的全局核估计。
我们研究了部分线性变系数加性风险模型的核估计方法,其中一种协变量的影响可以被另一种协变量修改。现有的变系数模型核估计方法通常采用“局部”方法,即只使用对象的小局部邻域来估计变系数函数。然而,这种局部方法通常是低效的,因为来自邻域之外的对象的一些不变的干扰参数的信息被丢弃了。在本文中,我们开发了一个“全局”核估计器,它同时估计函数的整个域上的变化系数,利用了干扰参数的非变化性质。我们建立了所提估计量的相合性和渐近正态性。由于全局估计量的维度随着样本量的增加而增加,理论上的发展比局部方法更具挑战性。我们进行了广泛的模拟研究,以证明与现有的本地方法相比,所提出的方法的可行性和优越性能,并为激励癌症基因组研究提供了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Conditional modeling of recurrent event data with terminal event. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Optimal survival analyses with prevalent and incident patients. Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1