Head pose-assisted localization of facial landmarks for enhanced fast registration in skull base surgery

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-12-30 DOI:10.1016/j.compmedimag.2024.102483
Yifei Yang , Jingfan Fan , Tianyu Fu , Deqiang Xiao , Dongsheng Ma , Hong Song , Zhengkai Feng , Youping Liu , Jian Yang
{"title":"Head pose-assisted localization of facial landmarks for enhanced fast registration in skull base surgery","authors":"Yifei Yang ,&nbsp;Jingfan Fan ,&nbsp;Tianyu Fu ,&nbsp;Deqiang Xiao ,&nbsp;Dongsheng Ma ,&nbsp;Hong Song ,&nbsp;Zhengkai Feng ,&nbsp;Youping Liu ,&nbsp;Jian Yang","doi":"10.1016/j.compmedimag.2024.102483","DOIUrl":null,"url":null,"abstract":"<div><div>In skull base surgery, the method of using a probe to draw or 3D scanners to acquire intraoperative facial point clouds for spatial registration presents several issues. Manual manipulation results in inefficiency and poor consistency. Traditional registration algorithms based on point clouds are highly dependent on the initial pose. The complexity of registration algorithms can also extend the required time. To address these issues, we used an RGB-D camera to capture real-time facial point clouds during surgery. The initial registration of the 3D model reconstructed from preoperative CT/MR images and the point cloud collected during surgery is accomplished through corresponding facial landmarks. The facial point clouds collected intraoperatively often contain rotations caused by the free-angle camera. Benefit from the close spatial geometric relationship between head pose and facial landmarks coordinates, we propose a facial landmarks localization network assisted by estimating head pose. The shared representation head pose estimation module boosts network performance by enhancing its perception of global facial features. The proposed network facilitates the localization of landmark points in both preoperative and intraoperative point clouds, enabling rapid automatic registration. A free-view human facial landmarks dataset called 3D-FVL was synthesized from clinical CT images for training. The proposed network achieves leading localization accuracy and robustness on two public datasets and the 3D-FVL. In clinical experiments, using the Artec Eva scanner, the trained network achieved a concurrent reduction in average registration time to 0.28 s, with an average registration error of 2.33 mm. The proposed method significantly reduced registration time, while meeting clinical accuracy requirements for surgical navigation. Our research will help to improving the efficiency and quality of skull base surgery.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102483"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001605","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In skull base surgery, the method of using a probe to draw or 3D scanners to acquire intraoperative facial point clouds for spatial registration presents several issues. Manual manipulation results in inefficiency and poor consistency. Traditional registration algorithms based on point clouds are highly dependent on the initial pose. The complexity of registration algorithms can also extend the required time. To address these issues, we used an RGB-D camera to capture real-time facial point clouds during surgery. The initial registration of the 3D model reconstructed from preoperative CT/MR images and the point cloud collected during surgery is accomplished through corresponding facial landmarks. The facial point clouds collected intraoperatively often contain rotations caused by the free-angle camera. Benefit from the close spatial geometric relationship between head pose and facial landmarks coordinates, we propose a facial landmarks localization network assisted by estimating head pose. The shared representation head pose estimation module boosts network performance by enhancing its perception of global facial features. The proposed network facilitates the localization of landmark points in both preoperative and intraoperative point clouds, enabling rapid automatic registration. A free-view human facial landmarks dataset called 3D-FVL was synthesized from clinical CT images for training. The proposed network achieves leading localization accuracy and robustness on two public datasets and the 3D-FVL. In clinical experiments, using the Artec Eva scanner, the trained network achieved a concurrent reduction in average registration time to 0.28 s, with an average registration error of 2.33 mm. The proposed method significantly reduced registration time, while meeting clinical accuracy requirements for surgical navigation. Our research will help to improving the efficiency and quality of skull base surgery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在颅底手术中,头部姿势辅助定位面部标志增强快速定位。
在颅底手术中,使用探针绘制或3D扫描仪获取术中面部点云进行空间配准的方法存在几个问题。手工操作导致效率低下和一致性差。传统的基于点云的配准算法高度依赖于初始姿态。配准算法的复杂性也会延长所需的时间。为了解决这些问题,我们使用RGB-D相机在手术过程中实时捕捉面部点云。术前CT/MR图像重建的三维模型与术中采集的点云通过相应的面部地标完成初始配准。术中采集的面部点云通常包含由自由角度相机引起的旋转。利用头部姿态与面部地标坐标之间密切的空间几何关系,提出了一种基于头部姿态估计的面部地标定位网络。共享表示头姿估计模块通过增强其对全局面部特征的感知来提高网络性能。所提出的网络有助于在术前和术中点云中定位地标点,实现快速自动配准。从临床CT图像中合成了一个名为3D-FVL的自由视图人脸标志数据集,用于训练。该网络在两个公共数据集和3D-FVL上实现了领先的定位精度和鲁棒性。在临床实验中,使用Artec Eva扫描仪,训练后的神经网络将平均配准时间减少到0.28 s,平均配准误差为2.33 mm。该方法在满足临床手术导航精度要求的同时,显著减少了挂号时间。我们的研究将有助于提高颅底手术的效率和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Prior knowledge-based multi-task learning network for pulmonary nodule classification Automatic Joint Lesion Detection by enhancing local feature interaction TQGDNet: Coronary artery calcium deposit detection on computed tomography CGNet: Few-shot learning for Intracranial Hemorrhage Segmentation Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1