Xinyao Liu , Junchang Xin , Qi Shen , Zhihong Huang , Zhiqiong Wang
{"title":"Automatic medical report generation based on deep learning: A state of the art survey","authors":"Xinyao Liu , Junchang Xin , Qi Shen , Zhihong Huang , Zhiqiong Wang","doi":"10.1016/j.compmedimag.2024.102486","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing popularity of medical imaging and its expanding applications, posing significant challenges for radiologists. Radiologists need to spend substantial time and effort to review images and manually writing reports every day. To address these challenges and speed up the process of patient care, researchers have employed deep learning methods to automatically generate medical reports. In recent years, researchers have been increasingly focusing on this task and a large amount of related work has emerged. Although there have been some review articles summarizing the state of the art in this field, their discussions remain relatively limited. Therefore, this paper provides a comprehensive review of the latest advancements in automatic medical report generation, focusing on four key aspects: (1) describing the problem of automatic medical report generation, (2) introducing datasets of different modalities, (3) thoroughly analyzing existing evaluation metrics, (4) classifying existing studies into five categories: retrieval-based, domain knowledge-based, attention-based, reinforcement learning-based, large language models-based, and merged model. In addition, we point out the problems in this field and discuss the directions of future challenges. We hope that this review provides a thorough understanding of automatic medical report generation and encourages the continued development in this area.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102486"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001630","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing popularity of medical imaging and its expanding applications, posing significant challenges for radiologists. Radiologists need to spend substantial time and effort to review images and manually writing reports every day. To address these challenges and speed up the process of patient care, researchers have employed deep learning methods to automatically generate medical reports. In recent years, researchers have been increasingly focusing on this task and a large amount of related work has emerged. Although there have been some review articles summarizing the state of the art in this field, their discussions remain relatively limited. Therefore, this paper provides a comprehensive review of the latest advancements in automatic medical report generation, focusing on four key aspects: (1) describing the problem of automatic medical report generation, (2) introducing datasets of different modalities, (3) thoroughly analyzing existing evaluation metrics, (4) classifying existing studies into five categories: retrieval-based, domain knowledge-based, attention-based, reinforcement learning-based, large language models-based, and merged model. In addition, we point out the problems in this field and discuss the directions of future challenges. We hope that this review provides a thorough understanding of automatic medical report generation and encourages the continued development in this area.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.