Integrating natural product research laboratory with artificial intelligence: Advancements and breakthroughs in traditional medicine.

IF 2.1 Q2 MEDICINE, GENERAL & INTERNAL BioMedicine-Taiwan Pub Date : 2024-12-01 eCollection Date: 2024-01-01 DOI:10.37796/2211-8039.1475
Jai-Sing Yang, Shih-Chang Tsai, Yuan-Man Hsu, Da-Tian Bau, Chia-Wen Tsai, Wen-Shin Chang, Sheng-Chu Kuo, Chien-Chih Yu, Yu-Jen Chiu, Fuu-Jen Tsai
{"title":"Integrating natural product research laboratory with artificial intelligence: Advancements and breakthroughs in traditional medicine.","authors":"Jai-Sing Yang, Shih-Chang Tsai, Yuan-Man Hsu, Da-Tian Bau, Chia-Wen Tsai, Wen-Shin Chang, Sheng-Chu Kuo, Chien-Chih Yu, Yu-Jen Chiu, Fuu-Jen Tsai","doi":"10.37796/2211-8039.1475","DOIUrl":null,"url":null,"abstract":"<p><p>The Natural Product Research Laboratory (NPRL) of China Medical University Hospital (CMUH) was established in collaboration with CMUH and Professor Kuo-Hsiung Lee from the University of North Carolina at Chapel Hill. The laboratory collection features over 6000 natural products worldwide, including pure compounds and semi-synthetic derivatives. This is the most comprehensive and fully operational natural product database in Taiwan. This review article explores the history and development of the NPRL of CMUH. We then provide an overview of the recent applications and impact of artificial intelligence (AI) in new drug discovery. Finally, we examine advanced powerful AI-tools and related software to explain how these resources can be utilized in research on large-scale drug data libraries. This article presents a drug research and development (R&D) platform that combines AI with the NPRL. We believe that this approach will reduce resource wastage and enhance the research capabilities of Taiwan's academic and industrial sectors in biotechnology and pharmaceuticals.</p>","PeriodicalId":51650,"journal":{"name":"BioMedicine-Taiwan","volume":"14 4","pages":"1-14"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedicine-Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37796/2211-8039.1475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Natural Product Research Laboratory (NPRL) of China Medical University Hospital (CMUH) was established in collaboration with CMUH and Professor Kuo-Hsiung Lee from the University of North Carolina at Chapel Hill. The laboratory collection features over 6000 natural products worldwide, including pure compounds and semi-synthetic derivatives. This is the most comprehensive and fully operational natural product database in Taiwan. This review article explores the history and development of the NPRL of CMUH. We then provide an overview of the recent applications and impact of artificial intelligence (AI) in new drug discovery. Finally, we examine advanced powerful AI-tools and related software to explain how these resources can be utilized in research on large-scale drug data libraries. This article presents a drug research and development (R&D) platform that combines AI with the NPRL. We believe that this approach will reduce resource wastage and enhance the research capabilities of Taiwan's academic and industrial sectors in biotechnology and pharmaceuticals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然产物研究实验室与人工智能的融合:传统医学的进步与突破。
中国医科大学附属医院天然产物研究实验室(NPRL)由中国医科大学附属医院与美国北卡罗来纳大学教堂山分校李国雄教授联合成立。实验室收集了全球6000多种天然产品,包括纯化合物和半合成衍生物。这是台湾最全面、最完整的天然产品资料库。本文综述了CMUH NPRL的历史和发展。然后,我们概述了人工智能(AI)在新药发现中的最新应用和影响。最后,我们研究了先进的强大的人工智能工具和相关软件,以解释如何将这些资源用于大规模药物数据库的研究。本文介绍了一种将人工智能与NPRL相结合的药物研发平台。我们相信,这种做法将减少资源浪费,并提高台湾在生物技术和制药方面的学术和工业部门的研究能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMedicine-Taiwan
BioMedicine-Taiwan MEDICINE, GENERAL & INTERNAL-
CiteScore
2.80
自引率
5.90%
发文量
21
审稿时长
24 weeks
期刊最新文献
Integrating natural product research laboratory with artificial intelligence: Advancements and breakthroughs in traditional medicine. Juxtaposition of bone age and sexual maturity rating of the Taiwanese population. Machine learning-guided differential gene expression analysis identifies a highly-connected seven-gene cluster in triple-negative breast cancer. Advanced whole transcriptome sequencing and artificial intelligence/machine learning (AI/ML) in imiquimod-induced psoriasis-like inflammation of human keratinocytes. Application of machine learning to identify risk factors for outpatient opioid prescriptions following spine surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1