Characteristics of Atherosclerotic Plaques Left after Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome. Assessment According to Computed Tomographic Angiography of the Coronary Arteries.
I N Merkulova, A A Semenova, N A Barysheva, S A Gaman, T N Veselova, E A Bilyk, T S Sukhinina, M A Shariya, E B Yarovaya, G E Svinin, Z B Bashankaeva, I I Staroverov, D V Pevsner, S K Ternovoy
{"title":"Characteristics of Atherosclerotic Plaques Left after Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome. Assessment According to Computed Tomographic Angiography of the Coronary Arteries.","authors":"I N Merkulova, A A Semenova, N A Barysheva, S A Gaman, T N Veselova, E A Bilyk, T S Sukhinina, M A Shariya, E B Yarovaya, G E Svinin, Z B Bashankaeva, I I Staroverov, D V Pevsner, S K Ternovoy","doi":"10.18087/cardio.2024.12.n2690","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To evaluate characteristics of atherosclerotic plaques (ASP) remaining after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) by coronary computed tomography angiography (CCTA).</p><p><strong>Material and methods: </strong>Among 249 patients (193 men) with ACS aged 58±10 years, 183 (73.5%) had myocardial infarction, 66 (26.5%) had unstable angina. CCTA was performed after PCI at 3-7 days after the onset of ACS according to the standard protocol: in 41 patients, on a 64-slice tomograph (Aquilion 64, Toshiba, Japan) and in 208 patients, on a 640-slice tomograph with 320 rows of detectors (Aquilion ONE Vision Edition, Toshiba, Japan). CCTA of all patients was performed on a Vitrea workstation. Patients with at least one non-calcified ASP were included.</p><p><strong>Results: </strong>Among all ASPs, non-calcified ASPs predominated, 609 of 785 (77.6%), including 400 soft and 209 combined ones. Signs of obstruction (stenosis ≥50%) were noted in 72.2% of non-calcified ASPs. ASPs were characterized by a pronounced burden, 69 [61.4; 74.2]%, and a low minimum density, 31 [23; 37] HU, which was consistent with mature plaques with a lipid core. Various signs of ASP instability were observed in 6-35.3% of cases. There were 2 [2;3] (1 to 6) affected coronary arteries (CAs) and 3 [2;4] (1 to 7) ASPs, including calcified ones, per patient. 77.7% of ASPs were located in the CA proximal and middle segments. Obstructive stenosis was detected in 92% of patients. The number of ASPs with obstructive stenosis ranged from 0 to 7 per patient, with a median of 2 [1;3]. In 44% of patients, stenosis was 70% or more. The maximum burden of non-calcified ASPs was high, 74.3±12.1%; their maximum and total length were 13.8±10.4 mm and 26.5±19.7 mm, respectively; and the ASP minimum density was low, 25 [17;32] HU. ASPs with a low-density area of ≤46 HU and ≤30 HU were detected in 24.9% and 14.8% of patients, respectively. Other CCTA signs of instability were quite common: punctate calcifications in 52.2% of patients, coronary positive remodeling in 37%, the presence of \"ring-like enhancement\" in 16.1%, an uneven plaque contour in 26.7%, and at least one sign of ASP instability in 73% of patients.</p><p><strong>Conclusion: </strong>After PCI, patients with ACS still have rather many ASPs, including those with CCTA signs of instability, with stenosis >50%; more than a third of the plaques had stenosis >70%; the plaques were extended and localized mainly in the proximal and middle sections of the main CAs.</p>","PeriodicalId":54750,"journal":{"name":"Kardiologiya","volume":"64 12","pages":"3-11"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kardiologiya","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18087/cardio.2024.12.n2690","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To evaluate characteristics of atherosclerotic plaques (ASP) remaining after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) by coronary computed tomography angiography (CCTA).
Material and methods: Among 249 patients (193 men) with ACS aged 58±10 years, 183 (73.5%) had myocardial infarction, 66 (26.5%) had unstable angina. CCTA was performed after PCI at 3-7 days after the onset of ACS according to the standard protocol: in 41 patients, on a 64-slice tomograph (Aquilion 64, Toshiba, Japan) and in 208 patients, on a 640-slice tomograph with 320 rows of detectors (Aquilion ONE Vision Edition, Toshiba, Japan). CCTA of all patients was performed on a Vitrea workstation. Patients with at least one non-calcified ASP were included.
Results: Among all ASPs, non-calcified ASPs predominated, 609 of 785 (77.6%), including 400 soft and 209 combined ones. Signs of obstruction (stenosis ≥50%) were noted in 72.2% of non-calcified ASPs. ASPs were characterized by a pronounced burden, 69 [61.4; 74.2]%, and a low minimum density, 31 [23; 37] HU, which was consistent with mature plaques with a lipid core. Various signs of ASP instability were observed in 6-35.3% of cases. There were 2 [2;3] (1 to 6) affected coronary arteries (CAs) and 3 [2;4] (1 to 7) ASPs, including calcified ones, per patient. 77.7% of ASPs were located in the CA proximal and middle segments. Obstructive stenosis was detected in 92% of patients. The number of ASPs with obstructive stenosis ranged from 0 to 7 per patient, with a median of 2 [1;3]. In 44% of patients, stenosis was 70% or more. The maximum burden of non-calcified ASPs was high, 74.3±12.1%; their maximum and total length were 13.8±10.4 mm and 26.5±19.7 mm, respectively; and the ASP minimum density was low, 25 [17;32] HU. ASPs with a low-density area of ≤46 HU and ≤30 HU were detected in 24.9% and 14.8% of patients, respectively. Other CCTA signs of instability were quite common: punctate calcifications in 52.2% of patients, coronary positive remodeling in 37%, the presence of "ring-like enhancement" in 16.1%, an uneven plaque contour in 26.7%, and at least one sign of ASP instability in 73% of patients.
Conclusion: After PCI, patients with ACS still have rather many ASPs, including those with CCTA signs of instability, with stenosis >50%; more than a third of the plaques had stenosis >70%; the plaques were extended and localized mainly in the proximal and middle sections of the main CAs.
期刊介绍:
“Kardiologiya” (Cardiology) is a monthly scientific, peer-reviewed journal committed to both basic cardiovascular medicine and practical aspects of cardiology.
As the leader in its field, “Kardiologiya” provides original coverage of recent progress in cardiovascular medicine. We publish state-of-the-art articles integrating clinical and research activities in the fields of basic cardiovascular science and clinical cardiology, with a focus on emerging issues in cardiovascular disease. Our target audience spans a diversity of health care professionals and medical researchers working in cardiovascular medicine and related fields.
The principal language of the Journal is Russian, an additional language – English (title, authors’ information, abstract, keywords).
“Kardiologiya” is a peer-reviewed scientific journal. All articles are reviewed by scientists, who gained high international prestige in cardiovascular science and clinical cardiology. The Journal is currently cited and indexed in major Abstracting & Indexing databases: Web of Science, Medline and Scopus.
The Journal''s primary objectives
Contribute to raising the professional level of medical researchers, physicians and academic teachers.
Present the results of current research and clinical observations, explore the effectiveness of drug and non-drug treatments of heart disease, inform about new diagnostic techniques; discuss current trends and new advancements in clinical cardiology, contribute to continuing medical education, inform readers about results of Russian and international scientific forums;
Further improve the general quality of reviewing and editing of manuscripts submitted for publication;
Provide the widest possible dissemination of the published articles, among the global scientific community;
Extend distribution and indexing of scientific publications in major Abstracting & Indexing databases.