Aerodynamic analysis of complex flapping motions based on free-flight biological data.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2025-01-21 DOI:10.1088/1748-3190/ada85c
Yishi Shen, Yi Xu, Shi Zhang, Tianyi Chen, Weimin Huang, Qing Shi
{"title":"Aerodynamic analysis of complex flapping motions based on free-flight biological data.","authors":"Yishi Shen, Yi Xu, Shi Zhang, Tianyi Chen, Weimin Huang, Qing Shi","doi":"10.1088/1748-3190/ada85c","DOIUrl":null,"url":null,"abstract":"<p><p>The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, the specific impact of these motions on the aerodynamic performance of wings throughout the wingbeat cycle, and their potential to inform engineering applications, remains insufficiently explored. To bridge this gap and better incorporate the properties of coupled motions into the design of biomimetic aircraft, we present a numerical investigation of four flapping-based coupled motions during different flight phases (i.e. take-off, level flight, and landing) using a pigeon-like airfoil model. The wingbeat motion data for these four coupled motions were based on real flying pigeons and divided into: flap-bending, flap-folding, flap-sweeping, and flap-twisting. We used computational fluid dynamic simulations to study the effects of these coupled motions on the flow field, generation of transient aerodynamic forces, and work done by different motions on flapping. It was found that, first, the flap-bending motion causes unstable changes in the effective angle of attack (AoA), which affects the attachment of the leading-edge vortex (LEV), thereby producing more lift at smaller bending angles. Next, the flap-folding motion causes the LEV to attach to the wing earlier and regulates the detachment of vortices. Significant changes in the folding angle are used to influence lift generation and the flap-sweeping motion has minimal effect on the flow field structure across the three flight phases. Finally, flap-twisting motion leads to notable changes in the effective AoA, allowing for dynamic adjustments to control aerodynamics at different stroke stages, resulting in less drag during take-off and more drag during landing. This study enhances the understanding of the aerodynamic performance of bird with coupled motions in different flight phases and provides theoretical guidance for the design of bionic flapping-wing aircraft with multi-degree-of-freedom wings.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ada85c","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The wings of birds contain complex morphing mechanisms that enable them to perform remarkable aerial maneuvers. Wing morphing is often described using five wingbeat motion parameters: flapping, bending, folding, sweeping, and twisting. However, the specific impact of these motions on the aerodynamic performance of wings throughout the wingbeat cycle, and their potential to inform engineering applications, remains insufficiently explored. To bridge this gap and better incorporate the properties of coupled motions into the design of biomimetic aircraft, we present a numerical investigation of four flapping-based coupled motions during different flight phases (i.e. take-off, level flight, and landing) using a pigeon-like airfoil model. The wingbeat motion data for these four coupled motions were based on real flying pigeons and divided into: flap-bending, flap-folding, flap-sweeping, and flap-twisting. We used computational fluid dynamic simulations to study the effects of these coupled motions on the flow field, generation of transient aerodynamic forces, and work done by different motions on flapping. It was found that, first, the flap-bending motion causes unstable changes in the effective angle of attack (AoA), which affects the attachment of the leading-edge vortex (LEV), thereby producing more lift at smaller bending angles. Next, the flap-folding motion causes the LEV to attach to the wing earlier and regulates the detachment of vortices. Significant changes in the folding angle are used to influence lift generation and the flap-sweeping motion has minimal effect on the flow field structure across the three flight phases. Finally, flap-twisting motion leads to notable changes in the effective AoA, allowing for dynamic adjustments to control aerodynamics at different stroke stages, resulting in less drag during take-off and more drag during landing. This study enhances the understanding of the aerodynamic performance of bird with coupled motions in different flight phases and provides theoretical guidance for the design of bionic flapping-wing aircraft with multi-degree-of-freedom wings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自由飞行生物学数据的复杂扑动气动分析。
鸟类的翅膀包含复杂的变形机制,使它们能够进行非凡的空中动作。机翼变形通常用五种振翼运动参数来描述:扑翼、弯曲、折叠、扫掠和扭转。然而,由于缺乏真实的鸟类飞行数据,对这些耦合运动的气动特性的深入研究仍然很少。为了更好地将耦合运动的特性应用到仿生飞机的设计中,我们对四种基于扑翼的耦合运动在不同的飞行阶段进行了数值研究。E,起飞,水平飞行和着陆)在一个鸽子状的翅膀模型。这四种耦合运动的翼拍运动数据以真实的鸽子为基础,分为翼折、翼折、翼扫和翼扭四种。利用计算流体动力学模拟研究了这些耦合运动对流场的影响、瞬态气动力的产生以及耦合运动对扑动所做的功。研究发现:首先,襟翼弯曲运动引起有效迎角(AOA)的不稳定变化,影响前缘涡(LEV)的附着,从而在较小的弯曲角下产生较大的升力;其次,襟翼折叠运动使LEV更早地附着在机翼上,并调节旋涡的脱离。折叠角的显著变化被用来影响升力的产生。掠翼运动对三个飞行阶段的流场结构影响最小。最后,襟翼扭转运动导致有效AOA的显著变化,允许在不同冲程阶段进行动态调整来控制空气动力学,从而在起飞时减少阻力,在着陆时增加阻力。该研究增强了对鸟类不同飞行阶段耦合运动气动性能的认识,为多自由度仿生扑翼飞机的设计提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight. Plant-inspired decentralized controller for robust orientation control of soft robotic manipulators. CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators. Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey. Flapping dynamics and wing flexibility enhance odor detection in blue bottle flies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1