Myosin Light Chain 9 Mediates Graft Fibrosis After Pediatric Liver Transplantation Through TLR4/MYD88/NF-κB Signaling.

IF 7.1 1区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY Cellular and Molecular Gastroenterology and Hepatology Pub Date : 2025-01-06 DOI:10.1016/j.jcmgh.2024.101453
Zhixin Zhang, Chong Dong, Shengqiao Zhao, Zhuyuan Si, Weiping Zheng, Kai Wang, Chao Sun, Zhuolun Song, Wei Gao
{"title":"Myosin Light Chain 9 Mediates Graft Fibrosis After Pediatric Liver Transplantation Through TLR4/MYD88/NF-κB Signaling.","authors":"Zhixin Zhang, Chong Dong, Shengqiao Zhao, Zhuyuan Si, Weiping Zheng, Kai Wang, Chao Sun, Zhuolun Song, Wei Gao","doi":"10.1016/j.jcmgh.2024.101453","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>The incidence of graft fibrosis is elevated after pediatric liver transplantation (pLT) and is influenced by cold ischemic time (CIT). Myosin light chain 9 (MYL9), a member of the myosin family, could act on hepatic stellate cells (HSCs) and induce a transition to active phase. We hypothesized that cold ischemic injury could stimulate MYL9 expression and lead to graft fibrosis.</p><p><strong>Methods: </strong>We tested the hypothesis by analyzing multi-omics data from human protocol liver biopsy samples 2 years after LT, performing rat LT with different CIT and conducting in vitro studies in HSC cell lines with MYL9 knockdown and overexpression.</p><p><strong>Results: </strong>Clinically, CIT is an independent risk factor for graft fibrosis after pLT. Omics analysis identified MYL9 as a prominent contributor in graft fibrosis. MYL9 is strongly correlated with liver fibrosis grade and the progression of fibrosis. The study of rat LT model demonstrated MYL9 expression increases with the prolongation of CIT, and its role is specific to transplant setting. Mechanistically, in vitro experiments with HSCs exposed to hypoxia/reoxygenation revealed a substantial decrease in HSCs activation after MYL9 knockdown. Conversely, overexpression of MYL9 significantly enhanced the activation of HSCs. Subsequent transcriptome sequencing of HSCs with MYL9 knockdown unveiled that MYL9 primarily functions through the TLR4/MYD88/NF-κB signaling pathway. Liver graft fibrosis was ameliorated when toll like receptor 4 signaling was inhibited in rats.</p><p><strong>Conclusions: </strong>Our findings demonstrate that prolonged CIT up-regulates the expression of MYL9 in liver graft after LT. MYL9 activates HSCs and promotes fibrosis through a TLR4/MYD88/NF-κB signaling dependent manner.</p>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":" ","pages":"101453"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jcmgh.2024.101453","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims: The incidence of graft fibrosis is elevated after pediatric liver transplantation (pLT) and is influenced by cold ischemic time (CIT). Myosin light chain 9 (MYL9), a member of the myosin family, could act on hepatic stellate cells (HSCs) and induce a transition to active phase. We hypothesized that cold ischemic injury could stimulate MYL9 expression and lead to graft fibrosis.

Methods: We tested the hypothesis by analyzing multi-omics data from human protocol liver biopsy samples 2 years after LT, performing rat LT with different CIT and conducting in vitro studies in HSC cell lines with MYL9 knockdown and overexpression.

Results: Clinically, CIT is an independent risk factor for graft fibrosis after pLT. Omics analysis identified MYL9 as a prominent contributor in graft fibrosis. MYL9 is strongly correlated with liver fibrosis grade and the progression of fibrosis. The study of rat LT model demonstrated MYL9 expression increases with the prolongation of CIT, and its role is specific to transplant setting. Mechanistically, in vitro experiments with HSCs exposed to hypoxia/reoxygenation revealed a substantial decrease in HSCs activation after MYL9 knockdown. Conversely, overexpression of MYL9 significantly enhanced the activation of HSCs. Subsequent transcriptome sequencing of HSCs with MYL9 knockdown unveiled that MYL9 primarily functions through the TLR4/MYD88/NF-κB signaling pathway. Liver graft fibrosis was ameliorated when toll like receptor 4 signaling was inhibited in rats.

Conclusions: Our findings demonstrate that prolonged CIT up-regulates the expression of MYL9 in liver graft after LT. MYL9 activates HSCs and promotes fibrosis through a TLR4/MYD88/NF-κB signaling dependent manner.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肌球蛋白轻链9通过TLR4/MYD88/NF-κB信号介导小儿肝移植后移植物纤维化。
背景与目的:儿童肝移植(pLT)术后移植物纤维化发生率升高,并受冷缺血时间(CIT)的影响。Myosin轻链9 (MYL9)是Myosin家族的一员,可作用于肝星状细胞(hsc)并诱导其向活化期过渡。我们假设冷缺血损伤可刺激MYL9表达并导致移植物纤维化。方法:我们通过分析肝移植后2年人类方案肝活检样本的多组学数据,进行不同CIT的大鼠肝移植,并在MYL9敲低和过表达的HSC细胞系中进行体外研究,来验证这一假设。结果:临床上,CIT是pLT术后移植物纤维化的独立危险因素。组学分析发现MYL9在移植物纤维化中起着重要作用。MYL9与肝纤维化等级和纤维化进展密切相关。大鼠LT模型研究表明,MYL9的表达随着CIT的延长而增加,其作用是移植环境特有的。机制上,造血干细胞暴露于缺氧/再氧化的体外实验显示,MYL9敲除后造血干细胞的活化显著降低。相反,MYL9的过表达显著增强了hsc的活化。随后对MYL9敲低的hsc进行转录组测序,发现MYL9主要通过TLR4/MYD88/NF-κB信号通路发挥作用。抑制TLR4信号可改善大鼠移植肝纤维化。结论:我们的研究结果表明,延长CIT可上调肝移植后MYL9的表达,MYL9通过TLR4/MYD88/NF-κB信号依赖性激活hsc,促进肝纤维化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.00
自引率
2.80%
发文量
246
审稿时长
42 days
期刊介绍: "Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology. CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.
期刊最新文献
Interferon Signaling Alters Epithelial Function in Eosinophilic Esophagitis. Revealing AIEC Virulence Genes Behind the Mask of Antimicrobial Resistance. Pioneering a New Frontier: Modeling the Epithelial-immune Cell Axis Using Human Intestinal Organoids. The Evolution of CMGH as The Basic Research Journal in Gastroenterology and Hepatology: "H" is for "Home". In vivo CRISPR Activation Screening, a Powerful Tool to Discover Oncogenic Driver Genes in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1