Performance evaluation and comparative analysis of different machine learning algorithms in predicting postnatal care utilization: Evidence from the ethiopian demographic and health survey 2016.

PLOS digital health Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.pdig.0000707
Daniel Niguse Mamo, Agmasie Damtew Walle, Eden Ketema Woldekidan, Jibril Bashir Adem, Yosef Haile Gebremariam, Meron Asmamaw Alemayehu, Ermias Bekele Enyew, Shimels Derso Kebede
{"title":"Performance evaluation and comparative analysis of different machine learning algorithms in predicting postnatal care utilization: Evidence from the ethiopian demographic and health survey 2016.","authors":"Daniel Niguse Mamo, Agmasie Damtew Walle, Eden Ketema Woldekidan, Jibril Bashir Adem, Yosef Haile Gebremariam, Meron Asmamaw Alemayehu, Ermias Bekele Enyew, Shimels Derso Kebede","doi":"10.1371/journal.pdig.0000707","DOIUrl":null,"url":null,"abstract":"<p><p>Postnatal care refers to the support provided to mothers and their newborns immediately after childbirth and during the first six weeks of life, a period when most maternal and neonatal deaths occur. In the 30 countries studied, nearly 40 percent of women did not receive a postpartum care check-up. This research aims to evaluate and compare the effectiveness of machine learning algorithms in predicting postnatal care utilization in Ethiopia and to identify the key factors involved. The study employs machine learning techniques to analyse secondary data from the 2016 Ethiopian Demographic and Health Survey. It aims to predict postnatal care utilization and identify key predictors via Python software, applying fifteen machine-learning algorithms to a sample of 7,193 women. Feature importance techniques were used to select the top predictors. The models' effectiveness was evaluated using sensitivity, specificity, F1 score, precision, accuracy, and area under the curve. Among the four experiments, tenfold cross-validation with balancing using Synthetic Minority Over-sampling Technique was outperformed. From fifteen models, the MLP Classifier (f1 score = 0.9548, AUC = 0.99), Random Forest Classifier (f1 score = 0.9543, AUC = 0.98), and Bagging Classifier (f1 score = 0.9498, AUC = 0.98) performed excellently, with a strong ability to differentiate between classes. The Region, residence, maternal education, religion, wealth index, health insurance status, and place of delivery are identified as contributing factors that predict postnatal care utilization. This study assessed machine learning models for forecasting postnatal care usage. Ten-fold cross-validation with Synthetic Minority Oversampling Technique produced the best results, emphasizing the significance of addressing class imbalance in healthcare datasets. This approach enhances the accuracy and dependability of predictive models. Key findings reveal regional and socioeconomic factors influencing PNC utilization, which can guide targeted initiatives to improve postnatal care utilization and ultimately enhance maternal and child health.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 1","pages":"e0000707"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Postnatal care refers to the support provided to mothers and their newborns immediately after childbirth and during the first six weeks of life, a period when most maternal and neonatal deaths occur. In the 30 countries studied, nearly 40 percent of women did not receive a postpartum care check-up. This research aims to evaluate and compare the effectiveness of machine learning algorithms in predicting postnatal care utilization in Ethiopia and to identify the key factors involved. The study employs machine learning techniques to analyse secondary data from the 2016 Ethiopian Demographic and Health Survey. It aims to predict postnatal care utilization and identify key predictors via Python software, applying fifteen machine-learning algorithms to a sample of 7,193 women. Feature importance techniques were used to select the top predictors. The models' effectiveness was evaluated using sensitivity, specificity, F1 score, precision, accuracy, and area under the curve. Among the four experiments, tenfold cross-validation with balancing using Synthetic Minority Over-sampling Technique was outperformed. From fifteen models, the MLP Classifier (f1 score = 0.9548, AUC = 0.99), Random Forest Classifier (f1 score = 0.9543, AUC = 0.98), and Bagging Classifier (f1 score = 0.9498, AUC = 0.98) performed excellently, with a strong ability to differentiate between classes. The Region, residence, maternal education, religion, wealth index, health insurance status, and place of delivery are identified as contributing factors that predict postnatal care utilization. This study assessed machine learning models for forecasting postnatal care usage. Ten-fold cross-validation with Synthetic Minority Oversampling Technique produced the best results, emphasizing the significance of addressing class imbalance in healthcare datasets. This approach enhances the accuracy and dependability of predictive models. Key findings reveal regional and socioeconomic factors influencing PNC utilization, which can guide targeted initiatives to improve postnatal care utilization and ultimately enhance maternal and child health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study protocol for a multi-center stepped-wedge cluster randomized trial to explore the usability and outcomes among young people living with HIV in Kiambu and Kirinyaga counties of Kenya, using an online health portal. Natural language processing to evaluate texting conversations between patients and healthcare providers during COVID-19 Home-Based Care in Rwanda at scale. Epidemiological methods in transition: Minimizing biases in classical and digital approaches. Use of assistive technology to assess distal motor function in subjects with neuromuscular disease. A data management system for precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1