Epidemiological methods in transition: Minimizing biases in classical and digital approaches.

PLOS digital health Pub Date : 2025-01-13 eCollection Date: 2025-01-01 DOI:10.1371/journal.pdig.0000670
Sara Mesquita, Lília Perfeito, Daniela Paolotti, Joana Gonçalves-Sá
{"title":"Epidemiological methods in transition: Minimizing biases in classical and digital approaches.","authors":"Sara Mesquita, Lília Perfeito, Daniela Paolotti, Joana Gonçalves-Sá","doi":"10.1371/journal.pdig.0000670","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes \"data-type\" instead of \"data-source,\" may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 1","pages":"e0000670"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epidemiology and Public Health have increasingly relied on structured and unstructured data, collected inside and outside of typical health systems, to study, identify, and mitigate diseases at the population level. Focusing on infectious diseases, we review the state of Digital Epidemiology at the beginning of 2020 and how it changed after the COVID-19 pandemic, in both nature and breadth. We argue that Epidemiology's progressive use of data generated outside of clinical and public health systems creates several technical challenges, particularly in carrying specific biases that are almost impossible to correct for a priori. Using a statistical perspective, we discuss how a definition of Digital Epidemiology that emphasizes "data-type" instead of "data-source," may be more operationally useful, by clarifying key methodological differences and gaps. Therefore, we briefly describe some of the possible biases arising from varied collection methods and sources, and offer some recommendations to better explore the potential of Digital Epidemiology, particularly on how to help reduce inequity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study protocol for a multi-center stepped-wedge cluster randomized trial to explore the usability and outcomes among young people living with HIV in Kiambu and Kirinyaga counties of Kenya, using an online health portal. Natural language processing to evaluate texting conversations between patients and healthcare providers during COVID-19 Home-Based Care in Rwanda at scale. Epidemiological methods in transition: Minimizing biases in classical and digital approaches. Use of assistive technology to assess distal motor function in subjects with neuromuscular disease. A data management system for precision medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1