A review of optical and thermal eye tissue parameters for improved computational models in retinal laser therapy.

IF 5 Q1 ENGINEERING, BIOMEDICAL Progress in biomedical engineering (Bristol, England) Pub Date : 2025-01-07 DOI:10.1088/2516-1091/ad9aec
G Zanellati, D Allegrini, F Auricchio, M R Romano, A Cattenone, G Alaimo, S Marconi
{"title":"A review of optical and thermal eye tissue parameters for improved computational models in retinal laser therapy.","authors":"G Zanellati, D Allegrini, F Auricchio, M R Romano, A Cattenone, G Alaimo, S Marconi","doi":"10.1088/2516-1091/ad9aec","DOIUrl":null,"url":null,"abstract":"<p><p>Laser surgery is recognized as a highly effective method for managing retinal diseases. However, the thermal effects of the laser on different eye tissues are not entirely understood yet. In this context, computational modeling can be a useful tool to predict therapy outcomes. Accurate optical and thermal parameters of ocular tissues are crucial to correctly modeling the laser-tissue interactions. The present work aims to provide an easily accessible list of optical and thermal parameters for developing computational models involving ocular tissues. An extensive literature review was conducted to gather data on these parameters. The sources of data and the methodology used to calculate these parameters are analyzed in detail to ensure the reliability of the proposed values. In particular, this review focuses on density, specific heat, thermal conductivity, refractive index, and absorption coefficient, with optical properties referring to the 577 nm wavelength. The review underscores a common tendency to rely on pre-existing values when developing new computational models, often lacking clarity regarding selection criteria and data sources. This emphasizes the necessity for new experimental studies to improve the accuracy of ocular tissue properties.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/ad9aec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Laser surgery is recognized as a highly effective method for managing retinal diseases. However, the thermal effects of the laser on different eye tissues are not entirely understood yet. In this context, computational modeling can be a useful tool to predict therapy outcomes. Accurate optical and thermal parameters of ocular tissues are crucial to correctly modeling the laser-tissue interactions. The present work aims to provide an easily accessible list of optical and thermal parameters for developing computational models involving ocular tissues. An extensive literature review was conducted to gather data on these parameters. The sources of data and the methodology used to calculate these parameters are analyzed in detail to ensure the reliability of the proposed values. In particular, this review focuses on density, specific heat, thermal conductivity, refractive index, and absorption coefficient, with optical properties referring to the 577 nm wavelength. The review underscores a common tendency to rely on pre-existing values when developing new computational models, often lacking clarity regarding selection criteria and data sources. This emphasizes the necessity for new experimental studies to improve the accuracy of ocular tissue properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
期刊最新文献
A comprehensive review of computational diagnostic techniques for lymphedema. Human motor performance assessment with lower limb exoskeletons as a potential strategy to support healthy aging-a perspective article. A review of optical and thermal eye tissue parameters for improved computational models in retinal laser therapy. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1