首页 > 最新文献

Progress in biomedical engineering (Bristol, England)最新文献

英文 中文
Advancing vaccine development in genomic era: A paradigm shift in vaccine discovery.
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-05 DOI: 10.1088/2516-1091/adb2c8
Miraj Ud Din, Xiaohui Liu, Hui Jiang, Sajjad Ahmad, Xiangdong Lai, Xuemei Wang

The issue of antibiotic resistance is increasing with time because of the quick rise of microbial strains. Overuse of antibiotics has led to multidrug-resistant (MDR), pan-drug-resistant (PDR), and extensively drug-resistant (XDR) bacterial strains, which have worsened the situation. Different techniques have been considered and applied to combat this issue, such as developing new antibiotics, practicing antibiotic stewardship, improving hygiene levels, and controlling antibiotic overuse. Vaccine development made a substantial contribution to overcoming this issue, although it has been underestimated. In the recent era, reverse vaccinology has contributed to developing different kinds of vaccines against pathogens, revolutionizing the vaccine development process. Reverse vaccinology helps to prioritize better vaccine candidates by using various tools to filter the pathogen's complete genome. In this review, we will shed light on computational vaccine designing, immunoinformatic tools, genomic and proteomic data, and the challenges and success stories of computational vaccine designing.

{"title":"Advancing vaccine development in genomic era: A paradigm shift in vaccine discovery.","authors":"Miraj Ud Din, Xiaohui Liu, Hui Jiang, Sajjad Ahmad, Xiangdong Lai, Xuemei Wang","doi":"10.1088/2516-1091/adb2c8","DOIUrl":"https://doi.org/10.1088/2516-1091/adb2c8","url":null,"abstract":"<p><p>The issue of antibiotic resistance is increasing with time because of the quick rise of microbial strains. Overuse of antibiotics has led to multidrug-resistant (MDR), pan-drug-resistant (PDR), and extensively drug-resistant (XDR) bacterial strains, which have worsened the situation. Different techniques have been considered and applied to combat this issue, such as developing new antibiotics, practicing antibiotic stewardship, improving hygiene levels, and controlling antibiotic overuse. Vaccine development made a substantial contribution to overcoming this issue, although it has been underestimated. In the recent era, reverse vaccinology has contributed to developing different kinds of vaccines against pathogens, revolutionizing the vaccine development process. Reverse vaccinology helps to prioritize better vaccine candidates by using various tools to filter the pathogen's complete genome. In this review, we will shed light on computational vaccine designing, immunoinformatic tools, genomic and proteomic data, and the challenges and success stories of computational vaccine designing.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical perspectives on traumatic brain injury in the elderly: a comprehensive review.
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-04 DOI: 10.1088/2516-1091/ada654
Hamed Abdi, David Sanchez-Molina, Silvia Garcia-Vilana, Vafa Rahimi-Movaghar

Traumatic brain injuries (TBIs) pose a significant health concern among the elderly population, influenced by age-related physiological changes and the prevalence of neurodegenerative diseases. Understanding the biomechanical dimensions of TBIs in this demographic is vital for developing effective preventive strategies and optimizing clinical management. This comprehensive review explores the intricate biomechanics of TBIs in the elderly, integrating medical and aging studies, experimental biomechanics of head tissues, and numerical simulations. Research reveals that global brain atrophy in normal aging occurs at annual rates of -0.2% to -0.5%. In contrast, neurodegenerative diseases such as Alzheimer's, Parkinson's, and multiple sclerosis are associated with significantly higher rates of brain atrophy. These variations in atrophy rates underscore the importance of considering differing brain atrophy patterns when evaluating TBIs among the elderly. Experimental studies further demonstrate that age-related changes in the mechanical properties of critical head tissues increase vulnerability to head injuries. Numerical simulations provide insights into the biomechanical response of the aging brain to traumatic events, aiding in injury prediction and preventive strategy development tailored to the elderly. Biomechanical analysis is essential for understanding injury mechanisms and forms the basis for developing effective preventive strategies. By incorporating local atrophy and age-specific impact characteristics into biomechanical models, researchers can create targeted interventions to reduce the risk of head injuries in vulnerable populations. Future research should focus on refining these models and integrating clinical data to better predict outcomes and enhance preventive care. Advancements in this field promise to improve health outcomes and reduce injury risks for the aging population.

{"title":"Biomechanical perspectives on traumatic brain injury in the elderly: a comprehensive review.","authors":"Hamed Abdi, David Sanchez-Molina, Silvia Garcia-Vilana, Vafa Rahimi-Movaghar","doi":"10.1088/2516-1091/ada654","DOIUrl":"10.1088/2516-1091/ada654","url":null,"abstract":"<p><p>Traumatic brain injuries (TBIs) pose a significant health concern among the elderly population, influenced by age-related physiological changes and the prevalence of neurodegenerative diseases. Understanding the biomechanical dimensions of TBIs in this demographic is vital for developing effective preventive strategies and optimizing clinical management. This comprehensive review explores the intricate biomechanics of TBIs in the elderly, integrating medical and aging studies, experimental biomechanics of head tissues, and numerical simulations. Research reveals that global brain atrophy in normal aging occurs at annual rates of -0.2% to -0.5%. In contrast, neurodegenerative diseases such as Alzheimer's, Parkinson's, and multiple sclerosis are associated with significantly higher rates of brain atrophy. These variations in atrophy rates underscore the importance of considering differing brain atrophy patterns when evaluating TBIs among the elderly. Experimental studies further demonstrate that age-related changes in the mechanical properties of critical head tissues increase vulnerability to head injuries. Numerical simulations provide insights into the biomechanical response of the aging brain to traumatic events, aiding in injury prediction and preventive strategy development tailored to the elderly. Biomechanical analysis is essential for understanding injury mechanisms and forms the basis for developing effective preventive strategies. By incorporating local atrophy and age-specific impact characteristics into biomechanical models, researchers can create targeted interventions to reduce the risk of head injuries in vulnerable populations. Future research should focus on refining these models and integrating clinical data to better predict outcomes and enhance preventive care. Advancements in this field promise to improve health outcomes and reduce injury risks for the aging population.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 2","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143123953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extrusion bioprinting: Meeting the promise of the human tissue biofabrication? 挤压生物打印:实现人体组织生物制造的承诺?
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-04 DOI: 10.1088/2516-1091/adb254
Ian Holland

Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.

{"title":"Extrusion bioprinting: Meeting the promise of the human tissue biofabrication?","authors":"Ian Holland","doi":"10.1088/2516-1091/adb254","DOIUrl":"https://doi.org/10.1088/2516-1091/adb254","url":null,"abstract":"<p><p>Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-powered Biomedical Devices: biology, materials, and their interfaces.
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-29 DOI: 10.1088/2516-1091/adaff2
Yuan Zhuang, Quan Zhang, Zhanxun Wan, Hao Geng, Zhongying Xue, Huiliang Cao

Integrating biomedical electronic devices holds profound promise for advancements in healthcare and enhancing individuals' quality of life. However, the persistent challenges associated with the traditional batteries' limited lifespan and bulkiness hinder these devices' long-term functionality and consistent power supply. Here, we delve into the biology and material interfaces in self-powered medical devices by summarizing the intrinsic electric demands in humans, analyzing material and biological mechanisms for electricity generation and storage, and discussing the pathways toward self-chargeable powering. As a result, the current challenges in material designs and biological integrations emerged to shape the future directions in advancing self-powered medical devices. This paper calls on the community to integrate biology and material science to develop self-powering medical devices and improve their clinical prospects. .

{"title":"Self-powered Biomedical Devices: biology, materials, and their interfaces.","authors":"Yuan Zhuang, Quan Zhang, Zhanxun Wan, Hao Geng, Zhongying Xue, Huiliang Cao","doi":"10.1088/2516-1091/adaff2","DOIUrl":"https://doi.org/10.1088/2516-1091/adaff2","url":null,"abstract":"<p><p>Integrating biomedical electronic devices holds profound promise for advancements in healthcare and enhancing individuals' quality of life. However, the persistent challenges associated with the traditional batteries' limited lifespan and bulkiness hinder these devices' long-term functionality and consistent power supply. Here, we delve into the biology and material interfaces in self-powered medical devices by summarizing the intrinsic electric demands in humans, analyzing material and biological mechanisms for electricity generation and storage, and discussing the pathways toward self-chargeable powering. As a result, the current challenges in material designs and biological integrations emerged to shape the future directions in advancing self-powered medical devices. This paper calls on the community to integrate biology and material science to develop self-powering medical devices and improve their clinical prospects.&#xD.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive review of computational diagnostic techniques for lymphedema. 淋巴水肿计算诊断技术的综合综述。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-09 DOI: 10.1088/2516-1091/ada85a
Jayasree K R, Vijaykumar D K, Vijayan Sugumaran, Rahul Krishnan Pathinarupothi

Lymphedema is localized swelling due to lymphatic system dysfunction, often affecting arms and legs due to fluid accumulation. It occurs in 20% to 94% of patients within 2 to 5 years after breast cancer treatment, with around 20% of women developing breast cancer-related lymphedema (BCRL). This condition involves the accumulation of protein-rich fluid in interstitial spaces, leading to symptoms like swelling, pain, and reduced mobility that significantly impact quality of life. The early diagnosis of lymphedema helps mitigate the risk of deterioration and prevent its progression to more severe stages. Healthcare providers can reduce risks through exercise prescriptions and self-manual lymphatic drainage techniques. Lymphedema diagnosis currently relies on physical examinations and limb volume measurements, but challenges arise from a lack of standardized criteria and difficulties in detecting early stages. Recent advancements in computational imaging and decision support systems have improved diagnostic accuracy through enhanced image reconstruction and real-time data analysis. The aim of this comprehensive review is to provide an in-depth overview of the research landscape in computational diagnostic techniques for lymphedema. The computational techniques primarily include imaging-based, electrical, and machine learning approaches, which utilize advanced algorithms and data analysis. These modalities were compared based on various parameters to choose the most suitable techniques for their applications. Lymphedema detection faces challenges like subtle symptoms and inconsistent diagnostics. The research identifies Bioimpedance Spectroscopy (BIS), Kinect sensor and Machine Learning integration as the promising modalities for early lymphedema detection. BIS can effectively identify lymphedema as early as four months post-surgery with sensitivity of 44.1% and specificity of 95.4% in diagnosing lymphedema whereas in Machine learning, Artificial Neural Network (ANN) achieved an impressive average cross-validation accuracy of 93.75%, with sensitivity at 95.65% and specificity at 91.03%. Machine learning and imaging can be integrated into clinical practice to enhance diagnostic accuracy and accessibility.

淋巴水肿是由于淋巴系统功能障碍引起的局部肿胀,通常由于液体积聚而影响手臂和腿部。在乳腺癌治疗后的2至5年内,20%至94%的患者会出现这种情况,其中约20%的女性会出现乳腺癌相关淋巴水肿(BCRL)。这种情况涉及到富含蛋白质的液体在间隙中积聚,导致肿胀、疼痛和活动能力降低等症状,严重影响生活质量。淋巴水肿的早期诊断有助于减轻恶化的风险,并防止其发展到更严重的阶段。医疗保健提供者可以通过运动处方和自我手动淋巴引流技术来降低风险。淋巴水肿的诊断目前依赖于身体检查和肢体体积测量,但由于缺乏标准化标准和早期发现困难而产生挑战。计算机成像和决策支持系统的最新进展通过增强图像重建和实时数据分析提高了诊断准确性。这篇综合综述的目的是对淋巴水肿计算诊断技术的研究前景进行深入的概述。计算技术主要包括基于成像、电子和机器学习的方法,这些方法利用了先进的算法和数据分析。根据各种参数对这些模式进行比较,以选择最适合其应用的技术。淋巴水肿的检测面临着诸如细微症状和不一致的诊断等挑战。该研究确定了生物阻抗光谱(BIS)、Kinect传感器和机器学习集成作为早期淋巴水肿检测的有前途的模式。BIS早在术后4个月就能有效识别淋巴水肿,诊断淋巴水肿的敏感性为44.1%,特异性为95.4%,而在机器学习中,人工神经网络(ANN)的平均交叉验证准确率为93.75%,敏感性为95.65%,特异性为91.03%。机器学习和成像可以整合到临床实践中,以提高诊断的准确性和可及性。
{"title":"A comprehensive review of computational diagnostic techniques for lymphedema.","authors":"Jayasree K R, Vijaykumar D K, Vijayan Sugumaran, Rahul Krishnan Pathinarupothi","doi":"10.1088/2516-1091/ada85a","DOIUrl":"https://doi.org/10.1088/2516-1091/ada85a","url":null,"abstract":"<p><p>Lymphedema is localized swelling due to lymphatic system dysfunction, often affecting arms and legs due to fluid accumulation. It occurs in 20% to 94% of patients within 2 to 5 years after breast cancer treatment, with around 20% of women developing breast cancer-related lymphedema (BCRL). This condition involves the accumulation of protein-rich fluid in interstitial spaces, leading to symptoms like swelling, pain, and reduced mobility that significantly impact quality of life. The early diagnosis of lymphedema helps mitigate the risk of deterioration and prevent its progression to more severe stages. Healthcare providers can reduce risks through exercise prescriptions and self-manual lymphatic drainage techniques. Lymphedema diagnosis currently relies on physical examinations and limb volume measurements, but challenges arise from a lack of standardized criteria and difficulties in detecting early stages. Recent advancements in computational imaging and decision support systems have improved diagnostic accuracy through enhanced image reconstruction and real-time data analysis. The aim of this comprehensive review is to provide an in-depth overview of the research landscape in computational diagnostic techniques for lymphedema. The computational techniques primarily include imaging-based, electrical, and machine learning approaches, which utilize advanced algorithms and data analysis. These modalities were compared based on various parameters to choose the most suitable techniques for their applications. Lymphedema detection faces challenges like subtle symptoms and inconsistent diagnostics. The research identifies Bioimpedance Spectroscopy (BIS), Kinect sensor and Machine Learning integration as the promising modalities for early lymphedema detection. BIS can effectively identify lymphedema as early as four months post-surgery with sensitivity of 44.1% and specificity of 95.4% in diagnosing lymphedema whereas in Machine learning, Artificial Neural Network (ANN) achieved an impressive average cross-validation accuracy of 93.75%, with sensitivity at 95.65% and specificity at 91.03%. Machine learning and imaging can be integrated into clinical practice to enhance diagnostic accuracy and accessibility.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human motor performance assessment with lower limb exoskeletons as a potential strategy to support healthy aging-a perspective article. 用下肢外骨骼评估人类运动表现作为支持健康老龄化的潜在策略——一篇透视文章。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-08 DOI: 10.1088/2516-1091/ada333
Tobias Moeller, Melina Beyerlein, Michael Herzog, Bettina Barisch-Fritz, Charlotte Marquardt, Miha Dežman, Katja Mombaur, Tamim Asfour, Alexander Woll, Thorsten Stein, Janina Krell-Roesch

With increasing age, motor performance declines. This decline is associated with less favorable health outcomes such as impaired activities of daily living, reduced quality of life, or increased mortality. Through regular assessment of motor performance, changes over time can be monitored, and targeted therapeutic programs and interventions may be informed. This can ensure better individualization of any intervention approach (e.g. by considering the current motor performance status of a person) and thus potentially increase its effectiveness with regard to maintaining current performance status or delaying further decline. However, in older adults, motor performance assessment is time consuming and requires experienced examiners and specific equipment, amongst others. This is particularly not feasible in care facility/nursing home settings. Wearable robotic devices, such as exoskeletons, have the potential of being used to assess motor performance and provide assistance during physical activities and exercise training for older adults or individuals with mobility impairments, thereby potentially enhancing motor performance. In this manuscript, we aim to (1) provide a brief overview of age-related changes of motor performance, (2) summarize established clinical and laboratory test procedures for the assessment of motor performance, (3) discuss the possibilities of translating established test procedures into exoskeleton-based procedures, and (4) highlight the feasibility, technological requirements and prerequisites for the assessment of human motor performance using lower limb exoskeletons.

随着年龄的增长,运动能力下降。这种下降与不太有利的健康结果有关,如日常生活活动受损、生活质量下降或死亡率增加。通过定期评估运动表现,可以监测随时间的变化,并告知有针对性的治疗方案和干预措施。这可以确保任何干预方法的更好的个性化(例如,通过考虑一个人当前的运动表现状态),从而潜在地提高其在维持当前表现状态或延缓进一步下降方面的有效性。然而,在老年人中,运动表现评估是耗时的,需要经验丰富的考官和特定的设备等。这在护理机构/养老院环境中尤其不可行。可穿戴机器人设备,如外骨骼,有潜力用于评估运动表现,并在老年人或行动不便的个人的体育活动和运动训练中提供帮助,从而潜在地提高运动表现。在本文中,我们的目标是(1)简要概述与年龄相关的运动表现变化,(2)总结已建立的用于评估运动表现的临床和实验室测试程序,(3)讨论将已建立的测试程序转化为基于外骨骼的程序的可能性,以及(4)强调使用下肢外骨骼评估人类运动表现的可行性,技术要求和先决条件。
{"title":"Human motor performance assessment with lower limb exoskeletons as a potential strategy to support healthy aging-a perspective article.","authors":"Tobias Moeller, Melina Beyerlein, Michael Herzog, Bettina Barisch-Fritz, Charlotte Marquardt, Miha Dežman, Katja Mombaur, Tamim Asfour, Alexander Woll, Thorsten Stein, Janina Krell-Roesch","doi":"10.1088/2516-1091/ada333","DOIUrl":"https://doi.org/10.1088/2516-1091/ada333","url":null,"abstract":"<p><p>With increasing age, motor performance declines. This decline is associated with less favorable health outcomes such as impaired activities of daily living, reduced quality of life, or increased mortality. Through regular assessment of motor performance, changes over time can be monitored, and targeted therapeutic programs and interventions may be informed. This can ensure better individualization of any intervention approach (e.g. by considering the current motor performance status of a person) and thus potentially increase its effectiveness with regard to maintaining current performance status or delaying further decline. However, in older adults, motor performance assessment is time consuming and requires experienced examiners and specific equipment, amongst others. This is particularly not feasible in care facility/nursing home settings. Wearable robotic devices, such as exoskeletons, have the potential of being used to assess motor performance and provide assistance during physical activities and exercise training for older adults or individuals with mobility impairments, thereby potentially enhancing motor performance. In this manuscript, we aim to (1) provide a brief overview of age-related changes of motor performance, (2) summarize established clinical and laboratory test procedures for the assessment of motor performance, (3) discuss the possibilities of translating established test procedures into exoskeleton-based procedures, and (4) highlight the feasibility, technological requirements and prerequisites for the assessment of human motor performance using lower limb exoskeletons.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of optical and thermal eye tissue parameters for improved computational models in retinal laser therapy. 视网膜激光治疗中用于改进计算模型的光学和热眼组织参数综述。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-07 DOI: 10.1088/2516-1091/ad9aec
G Zanellati, D Allegrini, F Auricchio, M R Romano, A Cattenone, G Alaimo, S Marconi

Laser surgery is recognized as a highly effective method for managing retinal diseases. However, the thermal effects of the laser on different eye tissues are not entirely understood yet. In this context, computational modeling can be a useful tool to predict therapy outcomes. Accurate optical and thermal parameters of ocular tissues are crucial to correctly modeling the laser-tissue interactions. The present work aims to provide an easily accessible list of optical and thermal parameters for developing computational models involving ocular tissues. An extensive literature review was conducted to gather data on these parameters. The sources of data and the methodology used to calculate these parameters are analyzed in detail to ensure the reliability of the proposed values. In particular, this review focuses on density, specific heat, thermal conductivity, refractive index, and absorption coefficient, with optical properties referring to the 577 nm wavelength. The review underscores a common tendency to rely on pre-existing values when developing new computational models, often lacking clarity regarding selection criteria and data sources. This emphasizes the necessity for new experimental studies to improve the accuracy of ocular tissue properties.

激光手术被认为是治疗视网膜疾病的有效方法。然而,激光对不同眼组织的热效应尚未完全了解。在这种情况下,计算模型可以成为预测治疗结果的有用工具。准确的眼组织光学和热参数是正确模拟激光与组织相互作用的关键。目前的工作旨在为开发涉及眼部组织的计算模型提供一个易于访问的光学和热参数列表。我们进行了广泛的文献综述,以收集有关这些参数的数据。详细分析了数据来源和计算这些参数的方法,以确保建议值的可靠性。本文重点介绍了密度、比热、导热系数、折射率和吸收系数,其中光学性质指的是577 nm波长。这篇综述强调了在开发新的计算模型时依赖已有值的普遍趋势,往往缺乏选择标准和数据源的明确性。这强调了开展新的实验研究以提高眼组织特性准确性的必要性。
{"title":"A review of optical and thermal eye tissue parameters for improved computational models in retinal laser therapy.","authors":"G Zanellati, D Allegrini, F Auricchio, M R Romano, A Cattenone, G Alaimo, S Marconi","doi":"10.1088/2516-1091/ad9aec","DOIUrl":"10.1088/2516-1091/ad9aec","url":null,"abstract":"<p><p>Laser surgery is recognized as a highly effective method for managing retinal diseases. However, the thermal effects of the laser on different eye tissues are not entirely understood yet. In this context, computational modeling can be a useful tool to predict therapy outcomes. Accurate optical and thermal parameters of ocular tissues are crucial to correctly modeling the laser-tissue interactions. The present work aims to provide an easily accessible list of optical and thermal parameters for developing computational models involving ocular tissues. An extensive literature review was conducted to gather data on these parameters. The sources of data and the methodology used to calculate these parameters are analyzed in detail to ensure the reliability of the proposed values. In particular, this review focuses on density, specific heat, thermal conductivity, refractive index, and absorption coefficient, with optical properties referring to the 577 nm wavelength. The review underscores a common tendency to rely on pre-existing values when developing new computational models, often lacking clarity regarding selection criteria and data sources. This emphasizes the necessity for new experimental studies to improve the accuracy of ocular tissue properties.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. 聚焦成纤维细胞-干细胞相互作用的生物工程三维患者源性肿瘤类器官模型的开发。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-27 DOI: 10.1088/2516-1091/ad9dcb
Nakka Sharmila Roy, Mamta Kumari, Kamare Alam, Anamitra Bhattacharya, Santanu Kaity, Kulwinder Kaur, Velayutham Ravichandiran, Subhadeep Roy

Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.

结合组织工程、再生医学和个性化治疗策略,三维(3D)模型,如肿瘤球体和类器官,正在日益发展。这些先进的3D体外模型不仅是端点驱动的,而且还提供了根据特定疾病参数定制或调节的灵活性。传统的2D单层培养不能充分捕捉实体肿瘤的复杂性,3D共培养系统提供了更准确的肿瘤微环境表征。这包括与间充质干细胞/基质细胞(MSCs)和诱导多能干细胞(iPSCs)的关键相互作用,它们显著调节癌细胞的行为和治疗反应。MCF7乳腺癌细胞与MSC共培养的大多数结果显示单层形成。虽然其他细胞和细胞外基质(extracellular matrix, ECM)引起间充质干细胞和iPSCs可塑性的变化已经被广泛研究,但间充质干细胞对癌症干细胞侵袭性的影响在不同的研究界仍然存在争议和矛盾。一些研究人员认为,癌症干细胞增殖得更多,而另一些人则提出,癌症的扩散是通过休眠发生的。这突出了进一步研究这些相互作用如何形成癌症侵袭性的必要性。本综述的目的是探讨癌细胞在富含MSCs、iPSCs和ECM成分的三维微环境中的行为变化。通过描述各种复制肿瘤生物学的MSC和ipsc衍生的3D乳腺癌模型,我们旨在阐明乳腺癌的潜在治疗靶点。本综述的重点是Transwell系统,该系统有助于了解MSCs和iPSCs如何影响迁移、侵袭和血管生成等关键过程。两个腔室之间形成的梯度是基于扩散的,就像在人体中看到的那样。一旦优化,Transwell模型可以作为高通量筛选平台,用于评估各种抗癌药物。在未来,基于原代细胞和患者衍生的3D类器官模型有望推进个性化医疗和加速药物开发过程。
{"title":"Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity.","authors":"Nakka Sharmila Roy, Mamta Kumari, Kamare Alam, Anamitra Bhattacharya, Santanu Kaity, Kulwinder Kaur, Velayutham Ravichandiran, Subhadeep Roy","doi":"10.1088/2516-1091/ad9dcb","DOIUrl":"10.1088/2516-1091/ad9dcb","url":null,"abstract":"<p><p>Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3D<i>in-vitro</i>models are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomedical applications of the engineered AIEgen-lipid nanostructurein vitroandin vivo. 工程磷脂纳米结构在体外和体内的生物医学应用。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-17 DOI: 10.1088/2516-1091/ad9aeb
Meng Suo, Tianfu Zhang, Xing-Jie Liang

Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsin vitroandin vivo. However, despite the favorable photophysical stability and ROS/heat generation capability in the aggregated state, limitations including uncontrolled size, low targeting efficiency, and unexpected dispersion in physiological environments have hindered their biomedical applications. The combination of AIEgens with lipids offers a simple, promising, and widely adopted solution to these challenges. This review article provides an overview of the synthesis methods of AIEgen-lipid nanostructures and their applications in the biomedical engineering field, aiming to serve as a guideline for developing these AIEgens-lipid nanostructures with promising biological applications.

自 Tang 及其合作者首次提出聚集诱导发射(AIE)的概念以来,聚集诱导发射活性光源(AIEgens)因其独特的优势,如荧光效率高、斯托克斯位移大、光稳定性好、背景噪声低,以及在聚集状态下具有超越传统荧光团的高生物可视化能力等,引起了化学家和生物学家的广泛关注。越来越多的 AIEgens 被设计成具有多功能特性,包括近红外发射、双光子吸收、活性氧(ROS)生成和光热转换,使其适用于深部组织成像和光疗。AIEgens 在体外和体内的生物医学应用中显示出巨大的潜力。然而,尽管AIEgens在聚集状态下具有良好的光物理稳定性和产生ROS/热能的能力,但其尺寸不可控、靶向效率低以及在生理环境中意外分散等局限性阻碍了它们在生物医学领域的应用。将 AIEgens 与脂质结合为应对这些挑战提供了一种简单、有前景且可广泛采用的解决方案。这篇综述文章概述了 AIEgens-脂质纳米结构的合成方法及其在生物医学工程领域的应用,旨在为开发这些具有良好生物应用前景的 AIEgens-脂质纳米结构提供指导。
{"title":"Biomedical applications of the engineered AIEgen-lipid nanostructure<i>in vitro</i>and<i>in vivo</i>.","authors":"Meng Suo, Tianfu Zhang, Xing-Jie Liang","doi":"10.1088/2516-1091/ad9aeb","DOIUrl":"10.1088/2516-1091/ad9aeb","url":null,"abstract":"<p><p>Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applications<i>in vitro</i>and<i>in vivo</i>. However, despite the favorable photophysical stability and ROS/heat generation capability in the aggregated state, limitations including uncontrolled size, low targeting efficiency, and unexpected dispersion in physiological environments have hindered their biomedical applications. The combination of AIEgens with lipids offers a simple, promising, and widely adopted solution to these challenges. This review article provides an overview of the synthesis methods of AIEgen-lipid nanostructures and their applications in the biomedical engineering field, aiming to serve as a guideline for developing these AIEgens-lipid nanostructures with promising biological applications.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. 结合活细胞成像的细胞拉伸装置:一种研究细胞如何对机械信号作出反应的有力方法。
IF 5 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2024-12-06 DOI: 10.1088/2516-1091/ad9699
Beatrice Bighi, Gregorio Ragazzini, Alessia Gallerani, Andrea Mescola, Chiara Scagliarini, Chiara Zannini, Martina Marcuzzi, Elena Olivi, Claudia Cavallini, Riccardo Tassinari, Michele Bianchi, Lorenzo Corsi, Carlo Ventura, Andrea Alessandrini

Mechanical stimuli have multiple effects on cell behavior, affecting a number of cellular processes including orientation, proliferation or apoptosis, migration and invasion, the production of extracellular matrix proteins, the activation and translocation of transcription factors, the expression of different genes such as those involved in inflammation and the reprogramming of cell fate. The recent development of cell stretching devices has paved the way for the study of cell reactions to stretching stimuliin-vitro, reproducing physiological situations that are experienced by cells in many tissues and related to functions such as breathing, heart beating and digestion. In this work, we review the highly-relevant contributions cell stretching devices can provide in the field of mechanobiology. We then provide the details for the in-house construction and operation of these devices, starting from the systems that we already developed and tested. We also review some examples where cell stretchers can supply meaningful insights into mechanobiology topics and we introduce new results from our exploitation of these devices.

机械刺激对细胞行为有多种影响,影响许多细胞过程,包括定向、增殖或凋亡、迁移和侵袭、细胞外基质蛋白的产生、转录因子的激活和易位、不同基因的表达,如参与炎症和细胞命运重编程的基因。细胞拉伸装置的最新发展为研究细胞对体外拉伸刺激的反应铺平了道路,再现了许多组织中细胞所经历的生理状况,并与呼吸、心脏跳动和消化等功能有关。在这项工作中,我们回顾了细胞拉伸装置在机械生物学领域中所能提供的高度相关的贡献。然后,我们从我们已经开发和测试的系统开始,提供这些设备的内部构造和操作的详细信息。我们还回顾了一些例子,其中细胞拉伸器可以为机械生物学主题提供有意义的见解,并介绍了我们利用这些设备的新结果。
{"title":"Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues.","authors":"Beatrice Bighi, Gregorio Ragazzini, Alessia Gallerani, Andrea Mescola, Chiara Scagliarini, Chiara Zannini, Martina Marcuzzi, Elena Olivi, Claudia Cavallini, Riccardo Tassinari, Michele Bianchi, Lorenzo Corsi, Carlo Ventura, Andrea Alessandrini","doi":"10.1088/2516-1091/ad9699","DOIUrl":"10.1088/2516-1091/ad9699","url":null,"abstract":"<p><p>Mechanical stimuli have multiple effects on cell behavior, affecting a number of cellular processes including orientation, proliferation or apoptosis, migration and invasion, the production of extracellular matrix proteins, the activation and translocation of transcription factors, the expression of different genes such as those involved in inflammation and the reprogramming of cell fate. The recent development of cell stretching devices has paved the way for the study of cell reactions to stretching stimuli<i>in-vitro</i>, reproducing physiological situations that are experienced by cells in many tissues and related to functions such as breathing, heart beating and digestion. In this work, we review the highly-relevant contributions cell stretching devices can provide in the field of mechanobiology. We then provide the details for the in-house construction and operation of these devices, starting from the systems that we already developed and tested. We also review some examples where cell stretchers can supply meaningful insights into mechanobiology topics and we introduce new results from our exploitation of these devices.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":"7 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Progress in biomedical engineering (Bristol, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1