Da-Wei Lin, Ling Zhang, Jin Zhang, Sriram Chandrasekaran
{"title":"Inferring metabolic objectives and trade-offs in single cells during embryogenesis.","authors":"Da-Wei Lin, Ling Zhang, Jin Zhang, Sriram Chandrasekaran","doi":"10.1016/j.cels.2024.12.005","DOIUrl":null,"url":null,"abstract":"<p><p>While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning. We validated SCOOTI by identifying essential genes from CRISPR-Cas9 screens in embryonic stem cells, and by inferring the metabolic objectives of quiescent cells, during different cell-cycle phases. Applying this to embryonic cell states, we observed a decrease in metabolic entropy upon development. We further uncovered a trade-off between glutathione and biosynthetic precursors in one-cell zygote, two-cell embryo, and blastocyst cells, potentially representing a trade-off between pluripotency and proliferation. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101164"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.12.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning. We validated SCOOTI by identifying essential genes from CRISPR-Cas9 screens in embryonic stem cells, and by inferring the metabolic objectives of quiescent cells, during different cell-cycle phases. Applying this to embryonic cell states, we observed a decrease in metabolic entropy upon development. We further uncovered a trade-off between glutathione and biosynthetic precursors in one-cell zygote, two-cell embryo, and blastocyst cells, potentially representing a trade-off between pluripotency and proliferation. A record of this paper's transparent peer review process is included in the supplemental information.