Fatima Abbas, Ömer Yusuf İpek, Philippe Moreau, Marco Canepari
{"title":"Neuronal Imaging at 8-Bit Depth to Combine High Spatial and High Temporal Resolution With Acquisition Rates Up To 40 kHz.","authors":"Fatima Abbas, Ömer Yusuf İpek, Philippe Moreau, Marco Canepari","doi":"10.1002/jbio.202400513","DOIUrl":null,"url":null,"abstract":"<p><p>A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca<sup>2+</sup> or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates. In hippocampal slices stained with the Ca<sup>2+</sup> indicator Fluo-4 AM, we resolved transients at 2 kHz from large frames. Along the apical dendrite of a layer-5 pyramidal neuron, we measured Ca<sup>2+</sup> signals associated with a back-propagating action potential at 10 kHz. Finally, in the axon initial segment of the same cell type, we recorded an action potential at 40 kHz by voltage-sensitive dye imaging. This approach unlocks the potential for a range of imaging measurements.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400513"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca2+ or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates. In hippocampal slices stained with the Ca2+ indicator Fluo-4 AM, we resolved transients at 2 kHz from large frames. Along the apical dendrite of a layer-5 pyramidal neuron, we measured Ca2+ signals associated with a back-propagating action potential at 10 kHz. Finally, in the axon initial segment of the same cell type, we recorded an action potential at 40 kHz by voltage-sensitive dye imaging. This approach unlocks the potential for a range of imaging measurements.