Advancements and applications of artificial intelligence in cardiovascular imaging: a comprehensive review.

European heart journal. Imaging methods and practice Pub Date : 2024-12-14 eCollection Date: 2024-10-01 DOI:10.1093/ehjimp/qyae136
Federico Fortuni, Giuseppe Ciliberti, Benedetta De Chiara, Edoardo Conte, Luca Franchin, Francesca Musella, Enrica Vitale, Francesco Piroli, Stefano Cangemi, Stefano Cornara, Michele Magnesa, Antonella Spinelli, Giovanna Geraci, Federico Nardi, Domenico Gabrielli, Furio Colivicchi, Massimo Grimaldi, Fabrizio Oliva
{"title":"Advancements and applications of artificial intelligence in cardiovascular imaging: a comprehensive review.","authors":"Federico Fortuni, Giuseppe Ciliberti, Benedetta De Chiara, Edoardo Conte, Luca Franchin, Francesca Musella, Enrica Vitale, Francesco Piroli, Stefano Cangemi, Stefano Cornara, Michele Magnesa, Antonella Spinelli, Giovanna Geraci, Federico Nardi, Domenico Gabrielli, Furio Colivicchi, Massimo Grimaldi, Fabrizio Oliva","doi":"10.1093/ehjimp/qyae136","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is transforming cardiovascular imaging by offering advancements across multiple modalities, including echocardiography, cardiac computed tomography (CCT), cardiovascular magnetic resonance (CMR), interventional cardiology, nuclear medicine, and electrophysiology. This review explores the clinical applications of AI within each of these areas, highlighting its ability to improve patient selection, reduce image acquisition time, enhance image optimization, facilitate the integration of data from different imaging modality and clinical sources, improve diagnosis and risk stratification. Moreover, we illustrate both the advantages and the limitations of AI across these modalities, acknowledging that while AI can significantly aid in diagnosis, risk stratification, and workflow efficiency, it cannot replace the expertise of cardiologists. Instead, AI serves as a powerful tool to streamline routine tasks, allowing clinicians to focus on complex cases where human judgement remains essential. By accelerating image interpretation and improving diagnostic accuracy, AI holds great potential to improve patient care and clinical decision-making in cardiovascular imaging.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"2 4","pages":"qyae136"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is transforming cardiovascular imaging by offering advancements across multiple modalities, including echocardiography, cardiac computed tomography (CCT), cardiovascular magnetic resonance (CMR), interventional cardiology, nuclear medicine, and electrophysiology. This review explores the clinical applications of AI within each of these areas, highlighting its ability to improve patient selection, reduce image acquisition time, enhance image optimization, facilitate the integration of data from different imaging modality and clinical sources, improve diagnosis and risk stratification. Moreover, we illustrate both the advantages and the limitations of AI across these modalities, acknowledging that while AI can significantly aid in diagnosis, risk stratification, and workflow efficiency, it cannot replace the expertise of cardiologists. Instead, AI serves as a powerful tool to streamline routine tasks, allowing clinicians to focus on complex cases where human judgement remains essential. By accelerating image interpretation and improving diagnostic accuracy, AI holds great potential to improve patient care and clinical decision-making in cardiovascular imaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在心血管成像中的进展及应用综述。
人工智能(AI)正在通过提供多种模式的进步来改变心血管成像,包括超声心动图、心脏计算机断层扫描(CCT)、心血管磁共振(CMR)、介入心脏病学、核医学和电生理学。本文探讨了人工智能在这些领域的临床应用,重点介绍了人工智能在改善患者选择、减少图像采集时间、增强图像优化、促进不同成像方式和临床来源数据整合、改善诊断和风险分层等方面的能力。此外,我们说明了人工智能在这些模式中的优势和局限性,承认虽然人工智能可以显着帮助诊断,风险分层和工作流程效率,但它不能取代心脏病专家的专业知识。相反,人工智能是简化日常任务的强大工具,使临床医生能够专注于人工判断仍然至关重要的复杂病例。通过加速图像解释和提高诊断准确性,人工智能在改善心血管成像的患者护理和临床决策方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cardiac imaging highlights from European Society of Cardiology 2024: the future is within our grasp! Prediction of tricuspid regurgitation regression after mitral valve transcatheter edge-to-edge repair using three-dimensional transoesophageal echocardiography. Clinical significance of the estimation of pulmonary-right ventricular uncoupling in patients with transthyretin amyloid cardiomyopathy. Coronary complications in Kawasaki disease: giant aneurysms and thrombosis leading to myocardial infarction. Echocardiography of the right heart in pulmonary arterial hypertension: insights from the ULTRA RIGHT VALUE study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1