{"title":"Dual-Beam THz Spectrometer with Low-Aberration Optics and Off-Axis Multipixel Photoconductive Emitters for Reduced Systematic Errors","authors":"Nishtha Chopra, James Lloyd-Hughes","doi":"10.1021/acsphotonics.4c01934","DOIUrl":null,"url":null,"abstract":"A dual-beam THz spectrometer is reported that substantially reduces the influence of systematic errors in THz time-domain spectroscopy such as those caused by variations in femtosecond laser power or the environmental temperature and humidity. Dual THz beams with single-cycle waveforms were generated simultaneously using a dual-pixel interdigitated photoconductive antenna, allowing the simultaneous acquisition of sample and reference data in the spectrometer using the same optical components. A low-aberration optical geometry ensured diffraction-limited spatial profiles for both beams despite their off-axis propagation and was validated experimentally by measuring frequency-dependent beam profiles and theoretically via physical optics calculations. Although the experimental amplitudes and absolute phase spectra of both beams were very similar, we further provided a correction procedure to eliminate these small differences. The robustness of the dual-beam spectrometer design was evaluated by measuring the complex transmission of a thin plastic sheet after intentionally introducing a change in the relative humidity of the THz beam path. The dual-beam THz spectrometer was effective at removing systematic errors in the amplitude and phase by simultaneously measuring the two THz beams under the same conditions.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"16 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01934","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A dual-beam THz spectrometer is reported that substantially reduces the influence of systematic errors in THz time-domain spectroscopy such as those caused by variations in femtosecond laser power or the environmental temperature and humidity. Dual THz beams with single-cycle waveforms were generated simultaneously using a dual-pixel interdigitated photoconductive antenna, allowing the simultaneous acquisition of sample and reference data in the spectrometer using the same optical components. A low-aberration optical geometry ensured diffraction-limited spatial profiles for both beams despite their off-axis propagation and was validated experimentally by measuring frequency-dependent beam profiles and theoretically via physical optics calculations. Although the experimental amplitudes and absolute phase spectra of both beams were very similar, we further provided a correction procedure to eliminate these small differences. The robustness of the dual-beam spectrometer design was evaluated by measuring the complex transmission of a thin plastic sheet after intentionally introducing a change in the relative humidity of the THz beam path. The dual-beam THz spectrometer was effective at removing systematic errors in the amplitude and phase by simultaneously measuring the two THz beams under the same conditions.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.