Chao Li, Dongdong Gao, Liang Zhang, Jianan Li, Fenming Zhang, Han Xiao, Gang Cheng
{"title":"Antifouling Hydrogel Based on Zwitterionic Poly(carboxybetaine diacrylate) Cross-Linkers","authors":"Chao Li, Dongdong Gao, Liang Zhang, Jianan Li, Fenming Zhang, Han Xiao, Gang Cheng","doi":"10.1021/acs.langmuir.4c04515","DOIUrl":null,"url":null,"abstract":"Antifouling zwitterionic materials have extensive applications in the biomedical field. This study designed and successfully synthesized a novel poly(carboxybetaine) diacrylate (PCBDA) via cationic ring-opening polymerization of 2-methyl-2-oxazine, chain modification by the Michael reaction, and chain end transformation to acrylate. The cross-linker was obtained with a tunable molecular weight. Through photopolymerization, poly(carboxybetaine) (PCB) hydrogels with varying solid contents were obtained, and the effects of the solid content on the hydration properties, mechanical properties, and microstructure of the PCB hydrogels were investigated. Furthermore, the non-fouling properties of the PCB hydrogels were compared to those of commercial polyethylene glycol (PEG) hydrogels. Protein adsorption on PCB hydrogels was reduced by more than 60% compared to low-fouling PEG hydrogels. PCB hydrogels exhibit antibacterial adhesion properties similar to those of PEG hydrogels. In cell adhesion experiments, no cell adhesion was observed on the PCB hydrogels, indicating their superior anti-cell adhesion function. This advancement offers a more promising alternative to polyethylene glycol diacrylate (PEGDA) cross-linkers in the design of hydrogels.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"3 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antifouling zwitterionic materials have extensive applications in the biomedical field. This study designed and successfully synthesized a novel poly(carboxybetaine) diacrylate (PCBDA) via cationic ring-opening polymerization of 2-methyl-2-oxazine, chain modification by the Michael reaction, and chain end transformation to acrylate. The cross-linker was obtained with a tunable molecular weight. Through photopolymerization, poly(carboxybetaine) (PCB) hydrogels with varying solid contents were obtained, and the effects of the solid content on the hydration properties, mechanical properties, and microstructure of the PCB hydrogels were investigated. Furthermore, the non-fouling properties of the PCB hydrogels were compared to those of commercial polyethylene glycol (PEG) hydrogels. Protein adsorption on PCB hydrogels was reduced by more than 60% compared to low-fouling PEG hydrogels. PCB hydrogels exhibit antibacterial adhesion properties similar to those of PEG hydrogels. In cell adhesion experiments, no cell adhesion was observed on the PCB hydrogels, indicating their superior anti-cell adhesion function. This advancement offers a more promising alternative to polyethylene glycol diacrylate (PEGDA) cross-linkers in the design of hydrogels.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).