Ultrasensitive detection of microRNAs based on cascade amplification strategy of RCA-PER and Cas12a

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-01-11 DOI:10.1039/d4an01463d
Xue Li, Dongxia Wang, Zhifeng Wei, Qingbo Xu, Jiahong Wang, Wenhui Zhang, Anling Zhang, Chuanjing Ju
{"title":"Ultrasensitive detection of microRNAs based on cascade amplification strategy of RCA-PER and Cas12a","authors":"Xue Li, Dongxia Wang, Zhifeng Wei, Qingbo Xu, Jiahong Wang, Wenhui Zhang, Anling Zhang, Chuanjing Ju","doi":"10.1039/d4an01463d","DOIUrl":null,"url":null,"abstract":"Since microRNAs (miRNAs) serve as markers for early cancer diagnosis, it is crucial to develop a novel biosensor to detect miRNAs quickly, sensitively and selectively. Hence, we developed a fluorescence biosensor, based on target miRNA-initiated rolling circle amplification (RCA) to generate RCA products with multiple tandem catalytic hairpin DNA templates that trigger primer exchange reactions (PER) which extend short single-strand DNA (ssDNA) primers into long ssDNA. Subsequently, the long ssDNA activates the trans-cleavage activity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system to cleave a fluorescent reporter chain, enabling ultrasensitive detection of miRNAs through the output fluorescence signal. The biosensor could quantify miRNA-141 concentrations from 100 to 105 pM, with a detection limit of 94 fM. Therefore, the biosensing strategy proposed in this study offers a robust technique for the clinical diagnosis of miRNA-141.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"84 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01463d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since microRNAs (miRNAs) serve as markers for early cancer diagnosis, it is crucial to develop a novel biosensor to detect miRNAs quickly, sensitively and selectively. Hence, we developed a fluorescence biosensor, based on target miRNA-initiated rolling circle amplification (RCA) to generate RCA products with multiple tandem catalytic hairpin DNA templates that trigger primer exchange reactions (PER) which extend short single-strand DNA (ssDNA) primers into long ssDNA. Subsequently, the long ssDNA activates the trans-cleavage activity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system to cleave a fluorescent reporter chain, enabling ultrasensitive detection of miRNAs through the output fluorescence signal. The biosensor could quantify miRNA-141 concentrations from 100 to 105 pM, with a detection limit of 94 fM. Therefore, the biosensing strategy proposed in this study offers a robust technique for the clinical diagnosis of miRNA-141.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Ultrasensitive detection of microRNAs based on cascade amplification strategy of RCA-PER and Cas12a Phage-ELISA for ultrasensitive detection of Salmonella enteritidis Facile fabrication of biocompatible carbon dots from egg white by one-step neutralization heat reaction: A capillary array-based fluorimetric strategy for high-throughput detection of total iron ions in fish blood Enhanced room temperature ammonia gas sensing based on multichannel PSS-functionalized graphene /PANI network High-sensitivity and stability electrochemical sensors for chlorogenic acid detection based on optimally engineered nanomaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1