Two-dimensional Czochralski growth of single-crystal MoS2

IF 37.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nature Materials Pub Date : 2025-01-10 DOI:10.1038/s41563-024-02069-7
He Jiang, Xiankun Zhang, Kuanglei Chen, Xiaoyu He, Yihe Liu, Huihui Yu, Li Gao, Mengyu Hong, Yunan Wang, Zheng Zhang, Yue Zhang
{"title":"Two-dimensional Czochralski growth of single-crystal MoS2","authors":"He Jiang, Xiankun Zhang, Kuanglei Chen, Xiaoyu He, Yihe Liu, Huihui Yu, Li Gao, Mengyu Hong, Yunan Wang, Zheng Zhang, Yue Zhang","doi":"10.1038/s41563-024-02069-7","DOIUrl":null,"url":null,"abstract":"<p>Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials. Here we establish a liquid-to-solid crystallization in 2D space that can rapidly grow a centimetre-scale single-crystal MoS<sub>2</sub> domain with no grain boundaries. The large MoS<sub>2</sub> single crystal obtained shows superb uniformity and high quality with an ultra-low defect density. A statistical analysis of field effect transistors fabricated from the MoS<sub>2</sub> reveals a high device yield and minimal variation in mobility, positioning this FET as an advanced standard monolayer MoS<sub>2</sub> device. This 2D Czochralski method has implications for fabricating high-quality and scalable 2D semiconductor materials and devices.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"25 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02069-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials. Here we establish a liquid-to-solid crystallization in 2D space that can rapidly grow a centimetre-scale single-crystal MoS2 domain with no grain boundaries. The large MoS2 single crystal obtained shows superb uniformity and high quality with an ultra-low defect density. A statistical analysis of field effect transistors fabricated from the MoS2 reveals a high device yield and minimal variation in mobility, positioning this FET as an advanced standard monolayer MoS2 device. This 2D Czochralski method has implications for fabricating high-quality and scalable 2D semiconductor materials and devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
期刊最新文献
Morphology remodelling and membrane channel formation in synthetic cells via reconfigurable DNA nanorafts Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet Two-dimensional Czochralski growth Two-dimensional Czochralski growth of single-crystal MoS2 All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1