Albert J. Rogers, Neal K. Bhatia, Sabyasachi Bandyopadhyay, James Tooley, Rayan Ansari, Vyom Thakkar, Justin Xu, Jessica Torres Soto, Jagteshwar S. Tung, Mahmood I. Alhusseini, Paul Clopton, Reza Sameni, Gari D. Clifford, J. Weston Hughes, Euan A. Ashley, Marco V. Perez, Matei Zaharia, Sanjiv M. Narayan
{"title":"Identification of cardiac wall motion abnormalities in diverse populations by deep learning of the electrocardiogram","authors":"Albert J. Rogers, Neal K. Bhatia, Sabyasachi Bandyopadhyay, James Tooley, Rayan Ansari, Vyom Thakkar, Justin Xu, Jessica Torres Soto, Jagteshwar S. Tung, Mahmood I. Alhusseini, Paul Clopton, Reza Sameni, Gari D. Clifford, J. Weston Hughes, Euan A. Ashley, Marco V. Perez, Matei Zaharia, Sanjiv M. Narayan","doi":"10.1038/s41746-024-01407-y","DOIUrl":null,"url":null,"abstract":"<p>Cardiac wall motion abnormalities (WMA) are strong predictors of mortality, but current screening methods using Q waves from electrocardiograms (ECGs) have limited accuracy and vary across racial and ethnic groups. This study aimed to identify novel ECG features using deep learning to enhance WMA detection, referencing echocardiography as the gold standard. We collected ECG and echocardiogram data from 35,210 patients in California and labeled WMA using unstructured language parsing of echocardiographic reports. A deep neural network (ECG-WMA-Net) was trained and outperformed both expert ECG interpretation and Q-wave indices, achieving an AUROC of 0.781 (CI: 0.762–0.799). The model was externally validated in a diverse cohort from Georgia (<i>n</i> = 2338), with an AUC of 0.723 (CI: 0.685–0.757). Explainability analysis revealed significant contributions from QRS and T-wave regions. This deep learning approach improves WMA screening accuracy, potentially addressing physiological differences not captured by standard ECG-based methods.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"49 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-024-01407-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac wall motion abnormalities (WMA) are strong predictors of mortality, but current screening methods using Q waves from electrocardiograms (ECGs) have limited accuracy and vary across racial and ethnic groups. This study aimed to identify novel ECG features using deep learning to enhance WMA detection, referencing echocardiography as the gold standard. We collected ECG and echocardiogram data from 35,210 patients in California and labeled WMA using unstructured language parsing of echocardiographic reports. A deep neural network (ECG-WMA-Net) was trained and outperformed both expert ECG interpretation and Q-wave indices, achieving an AUROC of 0.781 (CI: 0.762–0.799). The model was externally validated in a diverse cohort from Georgia (n = 2338), with an AUC of 0.723 (CI: 0.685–0.757). Explainability analysis revealed significant contributions from QRS and T-wave regions. This deep learning approach improves WMA screening accuracy, potentially addressing physiological differences not captured by standard ECG-based methods.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.