Natural Densitals

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-01-10 DOI:10.1021/acs.jpclett.4c03166
Jerzy Cioslowski, Krzysztof Strasburger
{"title":"Natural Densitals","authors":"Jerzy Cioslowski, Krzysztof Strasburger","doi":"10.1021/acs.jpclett.4c03166","DOIUrl":null,"url":null,"abstract":"The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant <i></i><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>D</span></span><span style=\"vertical-align: -0.4em;\"><span>2</span></span></span><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span><span style=\"margin-right: 0.05em;\"><span>x</span></span><span style=\"vertical-align: -0.4em;\"><span>1</span></span></span><span style=\"margin-left: 0em; margin-right: 0.222em;\">,</span><span><span style=\"margin-right: 0.05em;\"><span>x</span></span><span style=\"vertical-align: -0.4em;\"><span>2</span></span></span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span></span></span></span><span style=\"\" tabindex=\"0\"><nobr><span overflow=\"scroll\"><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.8em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Script-italic;\">𝒟</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-bold-italic;\">𝒙</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">,</span><span style=\"padding-left: 0.173em;\"><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-bold-italic;\">𝒙</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"script\">D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"bold-italic\">x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"bold-italic\">x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></script> of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems. Spin-summed and spin-resolved versions of the NDs and their amplitudes are defined, and their properties are discussed in detail. Unlike the nonnegative-valued occupation numbers of the natural orbitals (NOs), these amplitudes exhibit diverse sign patterns that emerge within different regimes of electron correlation. The descriptive power of this property is vividly illustrated with the ground state of the H<sub>2</sub> molecule, in which the subtle interplay of various types of electron correlation is captured in detail by a straightforward examination of the amplitudes of the NDs alone. Offering the most compact bilinear representations of <i></i><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>D</span></span><span style=\"vertical-align: -0.4em;\"><span>2</span></span></span><span><span style=\"margin-left: 0em; margin-right: 0em;\">(</span><span><span style=\"margin-right: 0.05em;\"><span>x</span></span><span style=\"vertical-align: -0.4em;\"><span>1</span></span></span><span style=\"margin-left: 0em; margin-right: 0.222em;\">,</span><span><span style=\"margin-right: 0.05em;\"><span>x</span></span><span style=\"vertical-align: -0.4em;\"><span>2</span></span></span><span style=\"margin-left: 0em; margin-right: 0em;\">)</span></span></span></span><span style=\"\" tabindex=\"0\"><nobr><span overflow=\"scroll\"><span style=\"display: inline-block; position: relative; width: 0em; height: 0px; font-size: 110%;\"><span style=\"position: absolute;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.8em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Script-italic;\">𝒟</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span><span style=\"font-family: STIXMathJax_Main;\">(</span><span><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-bold-italic;\">𝒙</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">1</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">,</span><span style=\"padding-left: 0.173em;\"><span style=\"display: inline-block; position: relative; width: 1.026em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.57em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span><span style=\"font-family: STIXMathJax_Normal-bold-italic;\">𝒙</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.571em;\"><span><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">2</span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span><span style=\"font-family: STIXMathJax_Main;\">)</span></span></span></span></span></span></nobr></span><script type=\"math/mml\"><math display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"script\">D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"bold-italic\">x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"bold-italic\">x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></script> (a property analogous to that of the NOs with respect to the 1-matrix), the NDs open up entirely new vistas in the analysis of electronic structures of atoms and molecules.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03166","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant D2(x1,x2)𝒟2(𝒙1,𝒙2) of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems. Spin-summed and spin-resolved versions of the NDs and their amplitudes are defined, and their properties are discussed in detail. Unlike the nonnegative-valued occupation numbers of the natural orbitals (NOs), these amplitudes exhibit diverse sign patterns that emerge within different regimes of electron correlation. The descriptive power of this property is vividly illustrated with the ground state of the H2 molecule, in which the subtle interplay of various types of electron correlation is captured in detail by a straightforward examination of the amplitudes of the NDs alone. Offering the most compact bilinear representations of D2(x1,x2)𝒟2(𝒙1,𝒙2) (a property analogous to that of the NOs with respect to the 1-matrix), the NDs open up entirely new vistas in the analysis of electronic structures of atoms and molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
EOSnet: Embedded Overlap Structures for Graph Neural Networks in Predicting Material Properties An Atomistic Analysis of the Carpet Growth of KCl Across Step Edges on the Ag(111) Surface Highly Thermal-Conductive Cubic Boron Arsenide: Single-Crystal Growth, Properties, and Future Thin-Film Epitaxy Capturing the Elusive Curve-Crossing in Low-Lying States of Butadiene with Dressed TDDFT Natural Densitals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1