Bipeng Wang, Weibin Chu, Yifan Wu, Wissam A. Saidi, Oleg V. Prezhdo
{"title":"Sub-bandgap charge harvesting and energy up-conversion in metal halide perovskites: ab initio quantum dynamics","authors":"Bipeng Wang, Weibin Chu, Yifan Wu, Wissam A. Saidi, Oleg V. Prezhdo","doi":"10.1038/s41524-024-01467-4","DOIUrl":null,"url":null,"abstract":"<p>Metal halide perovskites (MHPs) exhibit unusual properties and complex dynamics. By combining ab initio time-dependent density functional theory, nonadiabatic molecular dynamics and machine learning, we advance quantum dynamics simulation to nanosecond timescale and demonstrate that large fluctuations of MHP defect energy levels extend light absorption to longer wavelengths and enable trapped charges to escape into bands. This allows low energy photons to contribute to photocurrent through energy up-conversion. Deep defect levels can become shallow transiently and vice versa, altering the traditional defect classification into shallow and deep. While defect levels fluctuate more in MHPs than traditional semiconductors, some levels, e.g., Pb interstitials, remain far from band edges, acting as charge recombination centers. Still, many defects deemed detrimental based on static structures, are in fact benign and can contribute to energy up-conversion. The extended light harvesting and energy up-conversion provide strategies for design of novel solar, optoelectronic, and quantum information devices.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"21 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01467-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites (MHPs) exhibit unusual properties and complex dynamics. By combining ab initio time-dependent density functional theory, nonadiabatic molecular dynamics and machine learning, we advance quantum dynamics simulation to nanosecond timescale and demonstrate that large fluctuations of MHP defect energy levels extend light absorption to longer wavelengths and enable trapped charges to escape into bands. This allows low energy photons to contribute to photocurrent through energy up-conversion. Deep defect levels can become shallow transiently and vice versa, altering the traditional defect classification into shallow and deep. While defect levels fluctuate more in MHPs than traditional semiconductors, some levels, e.g., Pb interstitials, remain far from band edges, acting as charge recombination centers. Still, many defects deemed detrimental based on static structures, are in fact benign and can contribute to energy up-conversion. The extended light harvesting and energy up-conversion provide strategies for design of novel solar, optoelectronic, and quantum information devices.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.