{"title":"Scalable manufacturing of cellulose microfibril cryogel without organic solvent by adding tiny dosage of polyamide-epichlorohydrin","authors":"Wentao Wang, Rui Zhang, Jing Bai, Jing Peng, Wu Mang","doi":"10.1016/j.polymer.2025.128050","DOIUrl":null,"url":null,"abstract":"Large-scale applications of versatile cellulose cryogels have received much concern but remains challenging due to their complicated post-treatment and brittleness nature. A organic solvent-free and mechanical-assisted strategy was proposed here to effectively exfoliate cellulose microfibrils. The flexible, ultralight, elastic, and multi-scale cellulose hybrid cryogels were manufactured by adding tiny dosage of polyamide-epichlorohydrin (PAE), which was employed here as flexible and crosslinked skeleton. Undergoing freeze drying and vacuum heating, a series of CMFs/PAEx cryogels were successfully acquired with superior mechanical and thermal insulation performances. CMFs/PAE0.5 cryogel achieved 2.5 folds stress at 80% compressive strain and 2.4 folds elastic recovery with respect to CMFs/PAE0. The hydrophobic modification of the CMFs/PAEx cryogels were readily accessible by dip-coating of palm wax and endowed these cryogels with good water repellency (contact angle of ∼128<sup>o</sup>). Overall, the proposed strategy open up novel perspectives for the design of cellulose cryogels and beyond.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"16 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128050","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale applications of versatile cellulose cryogels have received much concern but remains challenging due to their complicated post-treatment and brittleness nature. A organic solvent-free and mechanical-assisted strategy was proposed here to effectively exfoliate cellulose microfibrils. The flexible, ultralight, elastic, and multi-scale cellulose hybrid cryogels were manufactured by adding tiny dosage of polyamide-epichlorohydrin (PAE), which was employed here as flexible and crosslinked skeleton. Undergoing freeze drying and vacuum heating, a series of CMFs/PAEx cryogels were successfully acquired with superior mechanical and thermal insulation performances. CMFs/PAE0.5 cryogel achieved 2.5 folds stress at 80% compressive strain and 2.4 folds elastic recovery with respect to CMFs/PAE0. The hydrophobic modification of the CMFs/PAEx cryogels were readily accessible by dip-coating of palm wax and endowed these cryogels with good water repellency (contact angle of ∼128o). Overall, the proposed strategy open up novel perspectives for the design of cellulose cryogels and beyond.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.