Biochar-based controlled-release fertilizers for enhancing plant growth and environmental sustainability: a review

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2025-01-11 DOI:10.1007/s00374-025-01888-3
Kumuduni Niroshika Palansooriya, Pavani Dulanja Dissanayake, Ali El-Naggar, Erandi Gayesha, Hasintha Wijesekara, Nageshwari Krishnamoorthy, Yanjiang Cai, Scott X. Chang
{"title":"Biochar-based controlled-release fertilizers for enhancing plant growth and environmental sustainability: a review","authors":"Kumuduni Niroshika Palansooriya, Pavani Dulanja Dissanayake, Ali El-Naggar, Erandi Gayesha, Hasintha Wijesekara, Nageshwari Krishnamoorthy, Yanjiang Cai, Scott X. Chang","doi":"10.1007/s00374-025-01888-3","DOIUrl":null,"url":null,"abstract":"<p>Pursuing sustainable agricultural production necessitates innovative approaches to enhance nutrient use efficiency and mitigate the environmental impact of fertilizer use in cropping systems. Biochar-based controlled-release fertilizers (BCRFs) have emerged as a promising solution to address these challenges. This paper reviews BCRF production methods, nutrient retention mechanisms, and effects on plant growth and the environment compared with conventional fertilizers. Various techniques have been used to improve the fertilizer efficiency of BCRFs, including impregnation, coating, granulation, co-pyrolysis, hydrothermal synthesis, and in-situ pyrolysis, each offering unique advantages in controlling nutrient release. BCRFs facilitate nutrient retention and gradual release, improving soil nutrient use efficiency. The BCRFs also improve soil structure and enhance microbial activities and root growth, thereby fostering resilient and productive crops. BCRFs have considerable potential for carbon sequestration, mitigation of greenhouse gas emissions, reduction in nutrient leaching and environmental impact, contributing to sustainable agricultural practices compared to the use of conventional fertilizers (e.g., synthetic or chemical fertilizers). However, attention is needed to address challenges concerning the economic feasibility, scalability, and regulatory frameworks associated with using BCRFs. BCRFs offer a promising pathway for improving nutrient management in agriculture; however, interdisciplinary efforts are needed to unlock their full potential in enhancing plant growth and environmental sustainability.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"21 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-025-01888-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pursuing sustainable agricultural production necessitates innovative approaches to enhance nutrient use efficiency and mitigate the environmental impact of fertilizer use in cropping systems. Biochar-based controlled-release fertilizers (BCRFs) have emerged as a promising solution to address these challenges. This paper reviews BCRF production methods, nutrient retention mechanisms, and effects on plant growth and the environment compared with conventional fertilizers. Various techniques have been used to improve the fertilizer efficiency of BCRFs, including impregnation, coating, granulation, co-pyrolysis, hydrothermal synthesis, and in-situ pyrolysis, each offering unique advantages in controlling nutrient release. BCRFs facilitate nutrient retention and gradual release, improving soil nutrient use efficiency. The BCRFs also improve soil structure and enhance microbial activities and root growth, thereby fostering resilient and productive crops. BCRFs have considerable potential for carbon sequestration, mitigation of greenhouse gas emissions, reduction in nutrient leaching and environmental impact, contributing to sustainable agricultural practices compared to the use of conventional fertilizers (e.g., synthetic or chemical fertilizers). However, attention is needed to address challenges concerning the economic feasibility, scalability, and regulatory frameworks associated with using BCRFs. BCRFs offer a promising pathway for improving nutrient management in agriculture; however, interdisciplinary efforts are needed to unlock their full potential in enhancing plant growth and environmental sustainability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进植物生长和环境可持续性的生物炭基控释肥料研究进展
追求可持续农业生产需要创新方法来提高养分利用效率,减轻种植系统中化肥使用对环境的影响。生物炭基控释肥料(BCRFs)已成为解决这些挑战的一种有希望的解决方案。本文综述了BCRF的生产方法、养分保持机理以及与常规肥料相比对植物生长和环境的影响。为了提高BCRFs的肥效,人们采用了浸渍、包覆、造粒、共热解、水热合成和原位热解等多种技术,每种技术在控制养分释放方面都具有独特的优势。BCRFs有利于养分的保留和逐渐释放,提高土壤养分利用效率。BCRFs还能改善土壤结构,促进微生物活动和根系生长,从而培育抗灾和高产作物。与使用常规肥料(例如合成肥料或化学肥料)相比,BCRFs在固碳、减缓温室气体排放、减少养分淋失和环境影响方面具有相当大的潜力,有助于可持续农业做法。然而,需要注意解决与使用BCRFs相关的经济可行性、可扩展性和监管框架方面的挑战。BCRFs为改善农业养分管理提供了一条有希望的途径;然而,需要跨学科的努力来释放它们在促进植物生长和环境可持续性方面的全部潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Nitrifier denitrification can contribute to N2O emissions substantially in wet agricultural soil Soil cropping selects for nutrient efficient but more costly indigenous mycorrhizal fungal communities Optimization of a model for denitrification with batch and porous media experiments Biochar mitigates nitrogen deposition-induced enhancement of soil N2O emissions in a subtropical forest Denitrification in Agricultural Soils – Integrated control and Modelling at various scales (DASIM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1