{"title":"Hepatincolaceae (Alphaproteobacteria) are Distinct From Holosporales and Independently Evolved to Associate With Ecdysozoa","authors":"Michele Castelli, Leandro Gammuto, Diona Podushkina, Matteo Vecchi, Tiziana Altiero, Emanuela Clementi, Roberto Guidetti, Lorena Rebecchi, Davide Sassera","doi":"10.1111/1462-2920.70028","DOIUrl":null,"url":null,"abstract":"<p>The <i>Hepatincolaceae</i> (<i>Alphaproteobacteria</i>) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the <i>Holosporales</i>, which includes intracellular bacteria in protist hosts. However, the genomics of <i>Hepatincolaceae</i> is still in its early stages. In this study, the number of available <i>Hepatincolaceae</i> genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with <i>Holosporales</i> was incorrect due to sequence compositional biases and that <i>Hepatincolaceae</i> form an independent branch within the <i>Hepatincolaceae</i>. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the <i>Holosporales</i>, with distinct specificities. The <i>Hepatincolaceae</i> exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of <i>Hepatincolaceae</i> show several lineage-specific traits related to differences in host species and life conditions.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70028","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages. In this study, the number of available Hepatincolaceae genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with Holosporales was incorrect due to sequence compositional biases and that Hepatincolaceae form an independent branch within the Hepatincolaceae. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the Holosporales, with distinct specificities. The Hepatincolaceae exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of Hepatincolaceae show several lineage-specific traits related to differences in host species and life conditions.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens