Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-10 DOI:10.1002/advs.202409803
S Dinesh Kumar, Jeongwon Park, Naveen Kumar Radhakrishnan, Yam Prasad Aryal, Geon-Hwi Jeong, In-Hyeok Pyo, Byambasuren Ganbaatar, Chul Won Lee, Sungtae Yang, Younhee Shin, Sathiyamoorthy Subramaniyam, Yu-Jin Lim, Sung-Hak Kim, Seongsoo Lee, Song Yub Shin, Sung-Jin Cho
{"title":"Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography.","authors":"S Dinesh Kumar, Jeongwon Park, Naveen Kumar Radhakrishnan, Yam Prasad Aryal, Geon-Hwi Jeong, In-Hyeok Pyo, Byambasuren Ganbaatar, Chul Won Lee, Sungtae Yang, Younhee Shin, Sathiyamoorthy Subramaniyam, Yu-Jin Lim, Sung-Hak Kim, Seongsoo Lee, Song Yub Shin, Sung-Jin Cho","doi":"10.1002/advs.202409803","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time. Here, a computational analysis of the leech transcriptome using an advanced AI-based peptide screening strategy with ODT to identify potential AMPs is employed. Among the 19 potential AMPs identified, hirunipin 2 demonstrates potent antibacterial activity, low mammalian cytotoxicity, and minimal hemolytic effects. It demonstrates efficacy comparable to melittin, resistance to physiological salts and human serum, and a low likelihood of inducing bacterial resistance. Microscopy and 3D-ODT confirm its disruption of bacterial membranes and intracellular aggregation, leading to cell death. Notably, hirunipin 2 effectively inhibits biofilm formation, eradicates preformed biofilms, and synergizes with antibiotics against multidrug-resistant Acinetobacter baumannii (MDRAB) by enhancing membrane permeability. Additionally, hirunipin 2 significantly suppresses pro-inflammatory cytokine expression in LPS-stimulated macrophages, highlighting its anti-inflammatory properties. These findings highlight hirunipin 2 as a strong candidate for developing novel antibacterial, anti-inflammatory, and antibiofilm therapies, particularly against multidrug-resistant bacterial infections.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2409803"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409803","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time. Here, a computational analysis of the leech transcriptome using an advanced AI-based peptide screening strategy with ODT to identify potential AMPs is employed. Among the 19 potential AMPs identified, hirunipin 2 demonstrates potent antibacterial activity, low mammalian cytotoxicity, and minimal hemolytic effects. It demonstrates efficacy comparable to melittin, resistance to physiological salts and human serum, and a low likelihood of inducing bacterial resistance. Microscopy and 3D-ODT confirm its disruption of bacterial membranes and intracellular aggregation, leading to cell death. Notably, hirunipin 2 effectively inhibits biofilm formation, eradicates preformed biofilms, and synergizes with antibiotics against multidrug-resistant Acinetobacter baumannii (MDRAB) by enhancing membrane permeability. Additionally, hirunipin 2 significantly suppresses pro-inflammatory cytokine expression in LPS-stimulated macrophages, highlighting its anti-inflammatory properties. These findings highlight hirunipin 2 as a strong candidate for developing novel antibacterial, anti-inflammatory, and antibiofilm therapies, particularly against multidrug-resistant bacterial infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Multi-material Electrohydrodynamic Printing of Bioelectronics with Sub-Microscale 3D Gold Pillars for In Vitro Extra- and Intra-Cellular Electrophysiological Recordings. Multi-miRNAs-Mediated Hepatic Lepr Axis Suppression: A Pparg-Dicer1 Pathway-Driven Mechanism in Spermatogenesis for the Intergenerational Transmission of Paternal Metabolic Syndrome. Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography. On-Chip Metamaterial-Enhanced Mid-Infrared Photodetectors with Built-In Encryption Features. On-Demand Controlled Release Multi-Drugs Delivery System for Spatiotemporally Synergizing Antitumor Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1