{"title":"Exosome-Mediated Lectin Pathway and Resistin-MIF-AA Metabolism Axis Drive Immune Dysfunction in Immune Thrombocytopenia","authors":"Jin Li, Xiaoqian Wang, Yaoyao Chen, Xianlei Sun, Liyan Fu, Qingxuan Xin, Huilin Zhang, Bo Qin, Nannan Sun, Yingmei Li, Yan Xu, Hui Yang, Dawei Huo, Yong Dong, Shuya Wang, Mengyun Zhao, Quande Lin, Fang Wang, Baohong Yue, Yanxia Gao, Yong Jiang, Rongqun Guo","doi":"10.1002/advs.202412378","DOIUrl":null,"url":null,"abstract":"<p>Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies. In this study, using flow cytometry (FCM), proteomics, and single-cell RNA sequencing of samples from patients with ITP, it is shown that exosome-mediated lectin complement pathway is involved in the pathogenesis of ITP, which triggers and enlarges the complement activation cascade without effective regulation because of downregulated CD55. The activated complement system enhances the immune response and resistin and further Macrophage Migration Inhibitory Factor (MIF) triggers several proinflammatory signaling pathways, which contribute to the survival of hyperactivated immune cells and dysfunctional arachidonic acid (AA) metabolism. The resistin and MIF are also identified as potential contributors to resistance to glucocorticoid therapy. Taken together, the findings indicate that the lectin pathway of the complement system, resistin, MIF, and AA metabolism may serve as promising targets for ITP treatment, offering novel perspectives on potential therapeutic interventions.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 10","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202412378","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies. In this study, using flow cytometry (FCM), proteomics, and single-cell RNA sequencing of samples from patients with ITP, it is shown that exosome-mediated lectin complement pathway is involved in the pathogenesis of ITP, which triggers and enlarges the complement activation cascade without effective regulation because of downregulated CD55. The activated complement system enhances the immune response and resistin and further Macrophage Migration Inhibitory Factor (MIF) triggers several proinflammatory signaling pathways, which contribute to the survival of hyperactivated immune cells and dysfunctional arachidonic acid (AA) metabolism. The resistin and MIF are also identified as potential contributors to resistance to glucocorticoid therapy. Taken together, the findings indicate that the lectin pathway of the complement system, resistin, MIF, and AA metabolism may serve as promising targets for ITP treatment, offering novel perspectives on potential therapeutic interventions.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.