Altered Neural Activity in the Mesoaccumbens Pathway Underlies Impaired Social Reward Processing in Shank3-Deficient Rats.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-03-14 DOI:10.1002/advs.202414813
Marie Barbier, Keerthi Thirtamara Rajamani, Shai Netser, Shlomo Wagner, Hala Harony-Nicolas
{"title":"Altered Neural Activity in the Mesoaccumbens Pathway Underlies Impaired Social Reward Processing in Shank3-Deficient Rats.","authors":"Marie Barbier, Keerthi Thirtamara Rajamani, Shai Netser, Shlomo Wagner, Hala Harony-Nicolas","doi":"10.1002/advs.202414813","DOIUrl":null,"url":null,"abstract":"<p><p>Social behaviors are crucial for human connection and belonging, often impacted by conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (ventral tegmental area (VTA) to the nucleus accumbense (NAc)) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions, associated with altered neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, they demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward processing  and identifying a potential neural pathway for intervention.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414813"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414813","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Social behaviors are crucial for human connection and belonging, often impacted by conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (ventral tegmental area (VTA) to the nucleus accumbense (NAc)) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions, associated with altered neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, they demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward processing  and identifying a potential neural pathway for intervention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Bio-Based Thermoplastic Room Temperature Phosphorescent Materials with Closed-Loop Recyclability. Altered Neural Activity in the Mesoaccumbens Pathway Underlies Impaired Social Reward Processing in Shank3-Deficient Rats. Prediction of Patient Drug Response via 3D Bioprinted Gastric Cancer Model Utilized Patient-Derived Tissue Laden Tissue-Specific Bioink (Adv. Sci. 10/2025) Tape-Assisted Residual Layer-Free One-Step Nanoimprinting of High-Index Hybrid Polymer for Optical Loss-Suppressed Metasurfaces (Adv. Sci. 10/2025) Novel Leech Antimicrobial Peptides, Hirunipins: Real-Time 3D Monitoring of Antimicrobial and Antibiofilm Mechanisms Using Optical Diffraction Tomography (Adv. Sci. 10/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1