GradeDiff-IM: an ensembles model-based grade classification of breast cancer.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2025-01-22 DOI:10.1088/2057-1976/ada8ae
Sweta Manna, Sujoy Mistry, Keshav Dahal
{"title":"GradeDiff-IM: an ensembles model-based grade classification of breast cancer.","authors":"Sweta Manna, Sujoy Mistry, Keshav Dahal","doi":"10.1088/2057-1976/ada8ae","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The practitioners learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification. However, the behavior of DL models is hidden type, it is unknown which features contribute to the accuracy and how the features are chosen for grading. To address the issue the study proposes a Grade Differentiation Integrated Model (GradeDiff-IM) to classify the grades G1, G2, and G3. In GradeDiff-IM, different ML models, are used for grade classification from clinical and pathological reports. The biological-significant features with ranking technique prioritize influential features are used to identify grades G. Subsequently, histopathological images are used by DL models for grade classification and compared with ML models. Instead of employing a single ML model, the GradeDiff-IM model uses the stack-ensembled approach to improve the grade G classification performance. The maximum accuracy is attained by stacking G1-98.2, G2-97.6, and G3-97.5. The proposed study shows that the ML ensemble model is more accurate than the DL models. As a result, the proposed model achieved higher accuracy for G by implementing the stacking technique than the other state-of-the-art models.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada8ae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The practitioners learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification. However, the behavior of DL models is hidden type, it is unknown which features contribute to the accuracy and how the features are chosen for grading. To address the issue the study proposes a Grade Differentiation Integrated Model (GradeDiff-IM) to classify the grades G1, G2, and G3. In GradeDiff-IM, different ML models, are used for grade classification from clinical and pathological reports. The biological-significant features with ranking technique prioritize influential features are used to identify grades G. Subsequently, histopathological images are used by DL models for grade classification and compared with ML models. Instead of employing a single ML model, the GradeDiff-IM model uses the stack-ensembled approach to improve the grade G classification performance. The maximum accuracy is attained by stacking G1-98.2, G2-97.6, and G3-97.5. The proposed study shows that the ML ensemble model is more accurate than the DL models. As a result, the proposed model achieved higher accuracy for G by implementing the stacking technique than the other state-of-the-art models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gradiff - im:基于集成模型的乳腺癌分级。
从健康组织和异常组织的细胞结构来确定癌症分级是一项具有挑战性的任务。分割者通过分级了解恶性细胞,并制定相应的治疗策略。大部分研究者使用深度学习模型进行等级分类。然而,深度学习模型的行为是隐藏型的,不知道哪些特征有助于准确性以及如何选择特征进行分级。为解决这一问题,本研究提出了等级分化积分法 ;模型(gradeff - im)对G1、G2、G3三个等级进行分类。在gradeff - im中,根据临床和病理报告使用不同的ML模型进行级别划分。采用生物显著性特征和排序技术对影响特征进行优先排序 ;随后,DL模型使用组织病理学图像进行级别分类,并与ML模型进行比较。gradiff - im模型没有使用单个ML模型,而是使用堆栈集成方法来改进grade ;G分类性能。通过叠加G1-98.2, G2-97.6和G3-97.5,可以获得最大的精度。研究表明,ML集成模型比DL模型更准确。结果表明,该模型具有较高的精度 ;对于G,通过实现叠加技术比其他最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Simulations of the potential for diffraction enhanced imaging at 8 kev using polycapillary optics. Determining event-related desynchronization onset latency of foot dorsiflexion in people with multiple sclerosis using the cluster depth tests. Automated detection of traumatic bleeding in CT images using 3D U-Net# and multi-organ segmentation. External delay and dispersion correction of automatically sampled arterial blood with dual flow rates. Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1