Beyond Increasing Sample Sizes: Optimizing Effect Sizes in Neuroimaging Research on Individual Differences.

IF 3.1 3区 医学 Q2 NEUROSCIENCES Journal of Cognitive Neuroscience Pub Date : 2025-01-07 DOI:10.1162/jocn_a_02297
Colin G DeYoung, Kirsten Hilger, Jamie L Hanson, Rany Abend, Timothy A Allen, Roger E Beaty, Scott D Blain, Robert S Chavez, Stephen A Engel, Ma Feilong, Alex Fornito, Erhan Genç, Vina Goghari, Rachael G Grazioplene, Philipp Homan, Keanan Joyner, Antonia N Kaczkurkin, Robert D Latzman, Elizabeth A Martin, Aki Nikolaidis, Alan D Pickering, Adam Safron, Tyler A Sassenberg, Michelle N Servaas, Luke D Smillie, R Nathan Spreng, Essi Viding, Jan Wacker
{"title":"Beyond Increasing Sample Sizes: Optimizing Effect Sizes in Neuroimaging Research on Individual Differences.","authors":"Colin G DeYoung, Kirsten Hilger, Jamie L Hanson, Rany Abend, Timothy A Allen, Roger E Beaty, Scott D Blain, Robert S Chavez, Stephen A Engel, Ma Feilong, Alex Fornito, Erhan Genç, Vina Goghari, Rachael G Grazioplene, Philipp Homan, Keanan Joyner, Antonia N Kaczkurkin, Robert D Latzman, Elizabeth A Martin, Aki Nikolaidis, Alan D Pickering, Adam Safron, Tyler A Sassenberg, Michelle N Servaas, Luke D Smillie, R Nathan Spreng, Essi Viding, Jan Wacker","doi":"10.1162/jocn_a_02297","DOIUrl":null,"url":null,"abstract":"<p><p>Linking neurobiology to relatively stable individual differences in cognition, emotion, motivation, and behavior can require large sample sizes to yield replicable results. Given the nature of between-person research, sample sizes at least in the hundreds are likely to be necessary in most neuroimaging studies of individual differences, regardless of whether they are investigating the whole brain or more focal hypotheses. However, the appropriate sample size depends on the expected effect size. Therefore, we propose four strategies to increase effect sizes in neuroimaging research, which may help to enable the detection of replicable between-person effects in samples in the hundreds rather than the thousands: (1) theoretical matching between neuroimaging tasks and behavioral constructs of interest; (2) increasing the reliability of both neural and psychological measurement; (3) individualization of measures for each participant; and (4) using multivariate approaches with cross-validation instead of univariate approaches. We discuss challenges associated with these methods and highlight strategies for improvements that will help the field to move toward a more robust and accessible neuroscience of individual differences.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1-12"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/jocn_a_02297","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Linking neurobiology to relatively stable individual differences in cognition, emotion, motivation, and behavior can require large sample sizes to yield replicable results. Given the nature of between-person research, sample sizes at least in the hundreds are likely to be necessary in most neuroimaging studies of individual differences, regardless of whether they are investigating the whole brain or more focal hypotheses. However, the appropriate sample size depends on the expected effect size. Therefore, we propose four strategies to increase effect sizes in neuroimaging research, which may help to enable the detection of replicable between-person effects in samples in the hundreds rather than the thousands: (1) theoretical matching between neuroimaging tasks and behavioral constructs of interest; (2) increasing the reliability of both neural and psychological measurement; (3) individualization of measures for each participant; and (4) using multivariate approaches with cross-validation instead of univariate approaches. We discuss challenges associated with these methods and highlight strategies for improvements that will help the field to move toward a more robust and accessible neuroscience of individual differences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越增加样本量:优化个体差异神经影像学研究的效应大小。
将神经生物学与认知、情感、动机和行为方面相对稳定的个体差异联系起来,可能需要大量的样本才能产生可复制的结果。考虑到人与人之间研究的性质,在大多数研究个体差异的神经影像学研究中,无论他们是在研究整个大脑还是更集中的假设,至少数百个样本的大小可能是必要的。然而,适当的样本量取决于预期的效应大小。因此,我们提出了四种策略来增加神经成像研究的效应大小,这可能有助于在数百而不是数千个样本中检测可复制的人际效应:(1)神经成像任务与感兴趣的行为结构之间的理论匹配;(2)提高神经测量和心理测量的可靠性;(3)针对每个参与者的个性化措施;(4)采用多变量交叉验证方法代替单变量方法。我们讨论了与这些方法相关的挑战,并强调了改进的策略,这些策略将有助于该领域向更强大、更容易理解的个体差异神经科学发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cognitive Neuroscience
Journal of Cognitive Neuroscience 医学-神经科学
CiteScore
5.30
自引率
3.10%
发文量
151
审稿时长
3-8 weeks
期刊介绍: Journal of Cognitive Neuroscience investigates brain–behavior interaction and promotes lively interchange among the mind sciences.
期刊最新文献
Task-dependent Modulation Masking of a 4-Hz Envelope Following Responses. Presenting Natural Continuous Speech in a Multisensory Immersive Environment Improves Speech Comprehension and Reflects the Allocation of Processing Resources in Neural Speech Tracking. EEG Decoding of Conscious versus Unconscious Representations during Binocular Rivalry. Exploring Dynamic Brain Oscillations in Motor Imagery and Low-frequency Sound. Salient, Unexpected Omissions of Sounds Can Involuntarily Distract Attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1