Annaïg De Walsche, Alexis Vergne, Renaud Rincent, Fabrice Roux, Stéphane Nicolas, Claude Welcker, Sofiane Mezmouk, Alain Charcosset, Tristan Mary-Huard
{"title":"metaGE: Investigating genotype x environment interactions through GWAS meta-analysis.","authors":"Annaïg De Walsche, Alexis Vergne, Renaud Rincent, Fabrice Roux, Stéphane Nicolas, Claude Welcker, Sofiane Mezmouk, Alain Charcosset, Tristan Mary-Huard","doi":"10.1371/journal.pgen.1011553","DOIUrl":null,"url":null,"abstract":"<p><p>Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 1","pages":"e1011553"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments. In this context, we introduce metaGE, a flexible and computationally efficient meta-analysis approach for jointly analyzing single-environment GWAS of any MET experiment. The metaGE procedure accounts for the heterogeneity of quantitative trait loci (QTL) effects across the environmental conditions and allows the detection of QTL whose allelic effect variations are strongly correlated to environmental cofactors. We evaluated the performance of the proposed methodology and compared it to two competing procedures through simulations. We also applied metaGE to two emblematic examples: the detection of flowering QTLs whose effects are modulated by competition in Arabidopsis and the detection of yield QTLs impacted by drought stresses in maize. The procedure identified known and new QTLs, providing valuable insights into the genetic architecture of complex traits and QTL effects dependent on environmental stress conditions. The whole statistical approach is available as an R package.
期刊介绍:
PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill).
Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.