{"title":"Protein phosphatase PP2C2 dephosphorylates transcription factor ZAT5 and modulates tomato fruit ripening","authors":"Yafei Li, Yanan Chang, Yiran Wang, Chaolin Gan, Chonghua Li, Xuejun Zhang, Yang-Dong Guo, Na Zhang","doi":"10.1093/plphys/kiaf017","DOIUrl":null,"url":null,"abstract":"Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.). Overexpression of SlZAT5 delayed ripening, while its knockout accelerated it, confirming its role as a negative regulator. SlZAT5 functions as a transcriptional repressor by directly inhibiting ripening-related genes, including SlACS4, SlPL8, and SlGRAS38, thereby delaying ripening. Furthermore, SlZAT5 interacts with the type 2C protein phosphatase SlPP2C2, which regulates the repressor activity of SlZAT5 by dephosphorylating SlZAT5 at Ser-65. This interaction is crucial in modulating ethylene production, thereby influencing the ripening process. These findings reveal a regulatory function of SlZAT5 in tomato fruit development, offering insights into the SlZAT5-SlPP2C2 module and potential targets for genetic modification to improve fruit quality and extend fruit shelf life.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"22 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf017","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although C2H2 zinc finger transcription factors are important in plant growth, development, and stress resistance, their specific roles in fruit ripening have been less explored. Here, we demonstrate that the C2H2 zinc finger transcription factor 5 (SlZAT5) regulates fruit ripening in tomato (Solanum lycopersicum L.). Overexpression of SlZAT5 delayed ripening, while its knockout accelerated it, confirming its role as a negative regulator. SlZAT5 functions as a transcriptional repressor by directly inhibiting ripening-related genes, including SlACS4, SlPL8, and SlGRAS38, thereby delaying ripening. Furthermore, SlZAT5 interacts with the type 2C protein phosphatase SlPP2C2, which regulates the repressor activity of SlZAT5 by dephosphorylating SlZAT5 at Ser-65. This interaction is crucial in modulating ethylene production, thereby influencing the ripening process. These findings reveal a regulatory function of SlZAT5 in tomato fruit development, offering insights into the SlZAT5-SlPP2C2 module and potential targets for genetic modification to improve fruit quality and extend fruit shelf life.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.