{"title":"Low-Frequency Learning for a Discrete Uncertain System","authors":"Nathaniel Sisson;K. Merve Dogan","doi":"10.1109/LCSYS.2024.3522058","DOIUrl":null,"url":null,"abstract":"Adaptive control techniques are ubiquitous methods for controlling dynamic systems, particularly because of their ability to improve system performance in the presence of uncertainties. However, a downside to these adaptive controllers is that particular learning rates are often required to ensure system performance requirements, creating high-frequency oscillations in the control input signal. These oscillations can potentially cause the system to become unstable or to have unacceptable performance. Thus, in this letter, we introduce a low-frequency learning adaptive control architecture for a discrete dynamical system with system uncertainties. In this framework, the update law is modified to include a filtered version of the updated parameter, allowing for high-frequency content to be removed while preserving system performance requirements. Lyapunov stability analysis is provided to guarantee asymptotic tracking error convergence of the closed-loop system. The results of a numerical simulation illustrates the reduction of high-frequencies in the system response.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3111-3116"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10813019/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive control techniques are ubiquitous methods for controlling dynamic systems, particularly because of their ability to improve system performance in the presence of uncertainties. However, a downside to these adaptive controllers is that particular learning rates are often required to ensure system performance requirements, creating high-frequency oscillations in the control input signal. These oscillations can potentially cause the system to become unstable or to have unacceptable performance. Thus, in this letter, we introduce a low-frequency learning adaptive control architecture for a discrete dynamical system with system uncertainties. In this framework, the update law is modified to include a filtered version of the updated parameter, allowing for high-frequency content to be removed while preserving system performance requirements. Lyapunov stability analysis is provided to guarantee asymptotic tracking error convergence of the closed-loop system. The results of a numerical simulation illustrates the reduction of high-frequencies in the system response.