Performance-Oriented Data-Driven Control: Fusing Koopman Operator and MPC-Based Reinforcement Learning

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-19 DOI:10.1109/LCSYS.2024.3520904
Hossein Nejatbakhsh Esfahani;Umesh Vaidya;Javad Mohammadpour Velni
{"title":"Performance-Oriented Data-Driven Control: Fusing Koopman Operator and MPC-Based Reinforcement Learning","authors":"Hossein Nejatbakhsh Esfahani;Umesh Vaidya;Javad Mohammadpour Velni","doi":"10.1109/LCSYS.2024.3520904","DOIUrl":null,"url":null,"abstract":"This letter develops the machinery of Koopman-based Model Predictive Control (KMPC) design, where the Koopman derived model is unable to capture the real nonlinear system perfectly. We then propose to use an MPC-based reinforcement learning within the Koopman framework combining the strengths of MPC, Reinforcement Learning (RL), and the Koopman Operator (KO) theory for an efficient data-driven control and performance-oriented learning of complex nonlinear systems. We show that the closed-loop performance of the KMPC is improved by modifying the KMPC objective function. In practice, we design a fully parameterized KMPC and employ RL to adjust the corresponding parameters aiming at achieving the best achievable closed-loop performance.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3021-3026"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10808167/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter develops the machinery of Koopman-based Model Predictive Control (KMPC) design, where the Koopman derived model is unable to capture the real nonlinear system perfectly. We then propose to use an MPC-based reinforcement learning within the Koopman framework combining the strengths of MPC, Reinforcement Learning (RL), and the Koopman Operator (KO) theory for an efficient data-driven control and performance-oriented learning of complex nonlinear systems. We show that the closed-loop performance of the KMPC is improved by modifying the KMPC objective function. In practice, we design a fully parameterized KMPC and employ RL to adjust the corresponding parameters aiming at achieving the best achievable closed-loop performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向性能的数据驱动控制:融合Koopman算子和基于mpc的强化学习
这封信发展了基于Koopman的模型预测控制(KMPC)设计的机制,其中Koopman导出的模型无法完美地捕获实际的非线性系统。然后,我们建议在Koopman框架内使用基于MPC的强化学习,结合MPC、强化学习(RL)和Koopman算子(KO)理论的优势,对复杂非线性系统进行有效的数据驱动控制和面向性能的学习。结果表明,通过修改KMPC目标函数,可以提高KMPC的闭环性能。在实践中,我们设计了一个全参数化的KMPC,并利用RL来调整相应的参数,以达到最佳的闭环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Encoding High-Level Knowledge in Offline Multi-Agent Reinforcement Learning Using Reward Machines Formation Tracking for Nonlinear Systems via Prescribed-Time Noncooperative Game A Delay-Free Adaptive Stepsize for the Incremental Aggregated Gradient Method Safe Control Synthesis for Neural Network Control Systems via Constrained Zonotopes Ergodic Quasilinearization and Control for Brain Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1