From a Single Trajectory to Safety Controller Synthesis of Discrete-Time Nonlinear Polynomial Systems

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-16 DOI:10.1109/LCSYS.2024.3519017
Behrad Samari;Omid Akbarzadeh;Mahdieh Zaker;Abolfazl Lavaei
{"title":"From a Single Trajectory to Safety Controller Synthesis of Discrete-Time Nonlinear Polynomial Systems","authors":"Behrad Samari;Omid Akbarzadeh;Mahdieh Zaker;Abolfazl Lavaei","doi":"10.1109/LCSYS.2024.3519017","DOIUrl":null,"url":null,"abstract":"This letter is concerned with developing a data-driven approach for learning control barrier certificates (CBCs) and associated safety controllers for discrete-time input-affine nonlinear systems with polynomial dynamics with (partially) unknown mathematical models, guaranteeing system safety over an infinite time horizon. The proposed approach leverages measured data acquired through an input-state observation, referred to as a single trajectory, collected over a specified time horizon. By fulfilling a certain rank condition, which ensures the unknown system is persistently excited by the collected data, we design a CBC and its corresponding safety controller directly from the finite-length observed data, without explicitly identifying the unknown dynamical system. This is achieved through proposing a data-based sum-of-squares optimization (SOS) program to systematically design CBCs and their safety controllers. We validate our data-driven approach over two physical case studies including a jet engine and a Lorenz system, demonstrating the efficacy of our proposed method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"3123-3128"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804185/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter is concerned with developing a data-driven approach for learning control barrier certificates (CBCs) and associated safety controllers for discrete-time input-affine nonlinear systems with polynomial dynamics with (partially) unknown mathematical models, guaranteeing system safety over an infinite time horizon. The proposed approach leverages measured data acquired through an input-state observation, referred to as a single trajectory, collected over a specified time horizon. By fulfilling a certain rank condition, which ensures the unknown system is persistently excited by the collected data, we design a CBC and its corresponding safety controller directly from the finite-length observed data, without explicitly identifying the unknown dynamical system. This is achieved through proposing a data-based sum-of-squares optimization (SOS) program to systematically design CBCs and their safety controllers. We validate our data-driven approach over two physical case studies including a jet engine and a Lorenz system, demonstrating the efficacy of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从单轨迹到安全控制器的离散时间非线性多项式系统综合
这封信是关于开发一种数据驱动的方法,用于学习控制屏障证书(CBCs)和相关的安全控制器,用于具有多项式动力学的离散时间输入仿射非线性系统,具有(部分)未知的数学模型,保证系统在无限时间范围内的安全性。提出的方法利用通过输入状态观察获得的测量数据,称为单个轨迹,在指定的时间范围内收集。通过满足一定的秩条件,确保未知系统被采集的数据持续激励,我们直接从有限长度的观测数据设计了CBC及其相应的安全控制器,而无需明确识别未知动力系统。这是通过提出一个基于数据的平方和优化(SOS)程序来系统地设计CBCs及其安全控制器来实现的。我们通过两个物理案例研究(包括喷气发动机和Lorenz系统)验证了我们的数据驱动方法,证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Formation Tracking for Nonlinear Systems via Prescribed-Time Noncooperative Game A Delay-Free Adaptive Stepsize for the Incremental Aggregated Gradient Method Safe Control Synthesis for Neural Network Control Systems via Constrained Zonotopes Ergodic Quasilinearization and Control for Brain Dynamics Safe Online Control-Informed Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1