A. S. M. Riyad, Buddhima Indraratna, Yujie Qi, Miriam Tawk
{"title":"Constitutive behaviour of a granular matrix containing coal mine waste intermixed with rubber crumbs","authors":"A. S. M. Riyad, Buddhima Indraratna, Yujie Qi, Miriam Tawk","doi":"10.1007/s11440-024-02433-6","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional railway substructure materials (i.e., natural crushed rock aggregates used for ballast and capping layers) degrade under service loads, incurring higher periodic maintenance costs compared to recycled materials. Using recycled waste materials such as coal wash and rubber crumbs for infrastructure upgrades not only reduces construction and maintenance costs but also supports environmental sustainability. By exploring unconventional avenues, earlier studies have delved into the viability of blending rubber crumbs (RC) and coal wash (CW) as an innovative substitute for traditional railway substructure materials, with a specific focus on the capping layer. This study introduces a semi-empirical constitutive model to simulate the response of mixtures of coal wash and rubber crumbs (CWRC) using the bounding surface plasticity framework. The novelty of this study is that a modified volumetric strain expression is introduced to capture the compressibility of rubber, thus enabling a more accurate representation of the internal deformation of rubber within the granular matrix. The variation of rubber content in the mixture is captured by the corresponding critical state void ratio surface and the hardening modulus. The theoretical model is then calibrated and validated using static drained triaxial test data for CWRC mixtures as well as mixtures of steel furnace slag, coal wash, and rubber crumbs (SFS + CW + RC).</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 1","pages":"185 - 196"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02433-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02433-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional railway substructure materials (i.e., natural crushed rock aggregates used for ballast and capping layers) degrade under service loads, incurring higher periodic maintenance costs compared to recycled materials. Using recycled waste materials such as coal wash and rubber crumbs for infrastructure upgrades not only reduces construction and maintenance costs but also supports environmental sustainability. By exploring unconventional avenues, earlier studies have delved into the viability of blending rubber crumbs (RC) and coal wash (CW) as an innovative substitute for traditional railway substructure materials, with a specific focus on the capping layer. This study introduces a semi-empirical constitutive model to simulate the response of mixtures of coal wash and rubber crumbs (CWRC) using the bounding surface plasticity framework. The novelty of this study is that a modified volumetric strain expression is introduced to capture the compressibility of rubber, thus enabling a more accurate representation of the internal deformation of rubber within the granular matrix. The variation of rubber content in the mixture is captured by the corresponding critical state void ratio surface and the hardening modulus. The theoretical model is then calibrated and validated using static drained triaxial test data for CWRC mixtures as well as mixtures of steel furnace slag, coal wash, and rubber crumbs (SFS + CW + RC).
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.