Numerical Simulation of Fluid Flow and Heat Transfer at Supercritical Pressures of Water Coolant for a Wire-Wrapped Rod Bundle

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Physics of Atomic Nuclei Pub Date : 2025-01-11 DOI:10.1134/S1063778824080209
V. Yu. Kukanov, A.A. Sedov, P. S. Polyakov
{"title":"Numerical Simulation of Fluid Flow and Heat Transfer at Supercritical Pressures of Water Coolant for a Wire-Wrapped Rod Bundle","authors":"V. Yu. Kukanov,&nbsp;A.A. Sedov,&nbsp;P. S. Polyakov","doi":"10.1134/S1063778824080209","DOIUrl":null,"url":null,"abstract":"<p>In this work, to assess the efficiency of the ANSYS CFX 14.0 code and obtain fluid flow properties, one heat transfer experiment using water as a coolant at supercritical pressures was selected: a 2 × 2 rod bundle with wire spacers along its length. A 3D CFD study of fluid flow and heat transfer at supercritical pressures was conducted for the geometry of the rod bundle, with the key parameter being the temperature of the inner wall of the fuel rod simulator. The influence of turbulence models SST, <i>k</i>–ω, and BSL, as well as various types of computational mesh to ensure the reliability of the assumed wall temperature, was investigated. After the study, the CFD model data was verified against experimental data. It was found that the CFD model was able to qualitatively describe the temperatures of the inner surfaces of the rods as reported in the experiments.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"87 8","pages":"1123 - 1137"},"PeriodicalIF":0.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778824080209","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, to assess the efficiency of the ANSYS CFX 14.0 code and obtain fluid flow properties, one heat transfer experiment using water as a coolant at supercritical pressures was selected: a 2 × 2 rod bundle with wire spacers along its length. A 3D CFD study of fluid flow and heat transfer at supercritical pressures was conducted for the geometry of the rod bundle, with the key parameter being the temperature of the inner wall of the fuel rod simulator. The influence of turbulence models SST, k–ω, and BSL, as well as various types of computational mesh to ensure the reliability of the assumed wall temperature, was investigated. After the study, the CFD model data was verified against experimental data. It was found that the CFD model was able to qualitatively describe the temperatures of the inner surfaces of the rods as reported in the experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线包棒束水冷剂超临界压力下流体流动与传热的数值模拟
在这项工作中,为了评估ANSYS CFX 14.0代码的效率并获得流体流动特性,选择了一个超临界压力下以水作为冷却剂的传热实验:一个2 × 2的杆束,沿其长度带钢丝间隔。以燃料棒模拟器内壁温度为关键参数,对燃料棒束的几何形状进行了超临界压力下流体流动和换热的三维CFD研究。研究了紊流模型SST、k -ω和BSL以及各种计算网格对假设壁面温度可靠性的影响。研究结束后,将CFD模型数据与实验数据进行了对比验证。结果表明,所建立的CFD模型能够定性地描述实验中所报道的棒内表面温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
期刊最新文献
An Assessment of the Influence of the Technogenic Acoustic Background on γ -Spectrometer Readings during Registration of γ-Radiation Spectra Methodology of Nuclear Research Reactor Conversion at the Decommissioning Stage Real-Time Performance Monitoring of Digital X-Ray Diagnostic Equipment Prior to Patient Admission Statistical Approximations in Studying the Interaction of Broadband Laser Radiation in a Complex Environment Method for Calculating Spatial Resolution of Heavy Ion Beam Probing for the T-15MD Tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1