Suppression of mycotoxins production and efficient chelation of heavy metals using natural melanin originated from Aspergillus flavus and Aspergillus carbonarius.
{"title":"Suppression of mycotoxins production and efficient chelation of heavy metals using natural melanin originated from Aspergillus flavus and Aspergillus carbonarius.","authors":"Nashwa El-Gazzar, Esraa Abdo, Gamal Rabie, Manal Tawfeek El-Sayed","doi":"10.1186/s12896-024-00941-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).</p><p><strong>Methods: </strong>First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR). Additionally, the melanin production culture conditions were optimized. The antioxidant activity of melanin was detected with 1,1-Diphenyl-2-picrylhydrazyl (DPPH). HPLC was used to measure the mycotoxins produced in culture media supplemented with melanin. Molecular docking study investigated molecular interactions between melanin and mycotoxins through in silico approaches. FTIR and Energy-dispersive X-ray spectroscopy (EDX) were utilized to determine the percentage of melanin-chelated HMs, and an atomic absorption spectrophotometer (AAS) was used to detect HMs removal efficiency.</p><p><strong>Results: </strong>The melanin-enriched medium (0.3% and 0.4%) exhibited complete inhibition of aflatoxin B1 (AF-B1) by A. flavus and ochratoxin A (OTA) by A. carbonarius, respectively. Furthermore, melanin showed effective HM removal efficiency, increasing with melanin concentration. The removal efficiency of Cd<sup>+2</sup> and Cr<sup>+6</sup> by 1 mg/mL melanin was 49% and 63%, respectively. When the concentration of melanin was increased to 15 mg/mL, the removal efficiency of Cd<sup>+2</sup> and Cr<sup>+2</sup> increased to 60% and 77%, respectively.</p><p><strong>Conclusion: </strong>The study exhibited a natural approach for melanin production, using melanin as a heavy metal-chelating agent and capability to inhibit the production of aflatoxin B1 and ochratoxin A. Further, the study provides significant evidence regarding the bioremediation pipeline, for melanin production through biotechnological processes by filamentous fungi.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"25 1","pages":"6"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00941-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).
Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR). Additionally, the melanin production culture conditions were optimized. The antioxidant activity of melanin was detected with 1,1-Diphenyl-2-picrylhydrazyl (DPPH). HPLC was used to measure the mycotoxins produced in culture media supplemented with melanin. Molecular docking study investigated molecular interactions between melanin and mycotoxins through in silico approaches. FTIR and Energy-dispersive X-ray spectroscopy (EDX) were utilized to determine the percentage of melanin-chelated HMs, and an atomic absorption spectrophotometer (AAS) was used to detect HMs removal efficiency.
Results: The melanin-enriched medium (0.3% and 0.4%) exhibited complete inhibition of aflatoxin B1 (AF-B1) by A. flavus and ochratoxin A (OTA) by A. carbonarius, respectively. Furthermore, melanin showed effective HM removal efficiency, increasing with melanin concentration. The removal efficiency of Cd+2 and Cr+6 by 1 mg/mL melanin was 49% and 63%, respectively. When the concentration of melanin was increased to 15 mg/mL, the removal efficiency of Cd+2 and Cr+2 increased to 60% and 77%, respectively.
Conclusion: The study exhibited a natural approach for melanin production, using melanin as a heavy metal-chelating agent and capability to inhibit the production of aflatoxin B1 and ochratoxin A. Further, the study provides significant evidence regarding the bioremediation pipeline, for melanin production through biotechnological processes by filamentous fungi.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.