One BAG doesn't fit all: the differences and similarities of BAG family members in mediating CNS homeostasis.

IF 9.6 1区 医学 Q1 NEUROSCIENCES Biological Psychiatry Pub Date : 2025-01-08 DOI:10.1016/j.biopsych.2024.12.019
Heng Lin, Sudarshan Ramanan, Sofia Kaplan, Darron H King, Dominic Bunn, Gail Vw Johnson
{"title":"One BAG doesn't fit all: the differences and similarities of BAG family members in mediating CNS homeostasis.","authors":"Heng Lin, Sudarshan Ramanan, Sofia Kaplan, Darron H King, Dominic Bunn, Gail Vw Johnson","doi":"10.1016/j.biopsych.2024.12.019","DOIUrl":null,"url":null,"abstract":"<p><p>There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis, and that their dysregulation contributes to neurological disorders. This protein family of nine members is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Heat Shock Protein (Hsp) 70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although there are numerous studies that focus on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors, Hsp72, Hsp70.2, CHIP and METTL3 which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating differences and similarities, and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.</p>","PeriodicalId":8918,"journal":{"name":"Biological Psychiatry","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.biopsych.2024.12.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis, and that their dysregulation contributes to neurological disorders. This protein family of nine members is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Heat Shock Protein (Hsp) 70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although there are numerous studies that focus on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors, Hsp72, Hsp70.2, CHIP and METTL3 which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating differences and similarities, and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个BAG不适合所有:BAG家族成员在调节中枢神经系统稳态中的异同。
越来越多的人意识到b细胞淋巴瘤2 (Bcl-2)相关的凋亡基因(BAG)蛋白在维持神经稳态中起着关键作用,并且它们的失调会导致神经系统疾病。该蛋白家族有9个成员,是进化保守的,每个成员至少有一个与热休克蛋白(Hsp) 70家族成员的核苷酸结合结构域结合的BAG结构域。总的来说,这些蛋白质对中枢神经系统(CNS)的正常功能至关重要。尽管有许多研究集中在特定的BAG蛋白上,但了解BAG家族成员如何协同行动以维持细胞稳态是必要的。本文综述了BAG家族成员中常见的BAG结构域相互作用子Hsp72、Hsp70.2、CHIP和METTL3。接下来是对每个BAG家族成员的简要描述,重点是其在中枢神经系统中的功能和神经系统疾病中的功能障碍。最后,我们通过描述不同BAG家族蛋白的差异和相似性,以及描述它们的功能如何互补或竞争来讨论不同BAG家族蛋白的分子功能交集。本综述中的信息为分析特定BAG家族成员在中枢神经系统和神经系统疾病中的作用提供了一个基本的概念框架。这一综述也为研究BAG家族成员如何发挥可能调节实验结果的冗余或拮抗作用提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Psychiatry
Biological Psychiatry 医学-精神病学
CiteScore
18.80
自引率
2.80%
发文量
1398
审稿时长
33 days
期刊介绍: Biological Psychiatry is an official journal of the Society of Biological Psychiatry and was established in 1969. It is the first journal in the Biological Psychiatry family, which also includes Biological Psychiatry: Cognitive Neuroscience and Neuroimaging and Biological Psychiatry: Global Open Science. The Society's main goal is to promote excellence in scientific research and education in the fields related to the nature, causes, mechanisms, and treatments of disorders pertaining to thought, emotion, and behavior. To fulfill this mission, Biological Psychiatry publishes peer-reviewed, rapid-publication articles that present new findings from original basic, translational, and clinical mechanistic research, ultimately advancing our understanding of psychiatric disorders and their treatment. The journal also encourages the submission of reviews and commentaries on current research and topics of interest.
期刊最新文献
Stress and Cognition: From Bench to Bedside? Memory Under Stress: From Adaptation to Disorder. Critically Assessing the Unanswered Questions of How, Where, and When to Induce Plasticity in the Posttraumatic Stress Disorder Network With Transcranial Magnetic Stimulation. Stress and Inflammation Target Dorsolateral Prefrontal Cortex Function: Neural Mechanisms Underlying Weakened Cognitive Control. Affective Visual Circuit Dysfunction in Trauma and Stress-Related Disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1