{"title":"The refined CYP2B6-Template system for studies of its ligand metabolisms.","authors":"Yasushi Yamazoe, Kouichi Yoshinari","doi":"10.1016/j.dmpk.2024.101037","DOIUrl":null,"url":null,"abstract":"<p><p>The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system. From their placements on the refined Template and rules for interaction modes, verifications of good and poor substrates, regio- and stereo-selectivities, and inhibitory interaction became faithfully available for these ligands, in which all the chemicals tested in the previous study were included. From the comparison of substrate specificities of human CYP2B6 and rat CYP2B1, size differences of one of the enzyme residues, Shelf, were suggested as a cause of their distinct catalyses. The refined CYP2B6-Template system will thus offer more reliable estimations of this human CYP catalyses toward ligands of diverse structures, together with their deciphering information to lead to judgments of metabolisms.</p>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"60 ","pages":"101037"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.dmpk.2024.101037","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The previously reported Template system for the prediction of human CYP2B6-mediated reactions (Drug Metab Pharmacokinet 26 309-330, 2011) has been refined with the introduction of ideas of allowable width, Trigger-residue and the residue-initiated movement of ligands in the active site. The refined system also includes ideas of bi-molecule binding on Template. With the use of these ideas in common with other Template systems for human CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2E1, and CYP3A4, 360 reactions of 261 distinct chemicals reported as CYP2B6 ligands were examined in the refined system. From their placements on the refined Template and rules for interaction modes, verifications of good and poor substrates, regio- and stereo-selectivities, and inhibitory interaction became faithfully available for these ligands, in which all the chemicals tested in the previous study were included. From the comparison of substrate specificities of human CYP2B6 and rat CYP2B1, size differences of one of the enzyme residues, Shelf, were suggested as a cause of their distinct catalyses. The refined CYP2B6-Template system will thus offer more reliable estimations of this human CYP catalyses toward ligands of diverse structures, together with their deciphering information to lead to judgments of metabolisms.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.