Yuewen Jia , Yijie Liu , Wenli Zhang , Rongxiao Wang , Yuying Sun , Jiquan Zhang
{"title":"Identification and functional analysis of a novel L-type lectin (NdLTL1) from Neocaridina denticulata sinensis","authors":"Yuewen Jia , Yijie Liu , Wenli Zhang , Rongxiao Wang , Yuying Sun , Jiquan Zhang","doi":"10.1016/j.fsi.2025.110116","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates an L-type lectin, <em>NdLTL1</em>, derived from <em>Neocaridina denticulata sinensis</em>, emphasizing its role in immune defense through carbohydrate binding and bacterial agglutination. Bioinformatics analysis identified 179 lectin sequences, leading to subsequent investigations into the structure and function of NdLTL1. The open reading frame (ORF) of <em>NdLTL1</em> spans 966 bp and encodes a protein consisting of 321 amino acids (36.25 kDa), which features a signal peptide, a transmembrane domain and Lectin_leg-like domain. Three-dimensional modeling revealed three antiparallel β-sheets characteristic of Lectin_leg-like domain, confirming evolutionary links with proteins such as VIP36. Protein-carbohydrate and protein-protein interaction studies showed that NdLTL1 binds to both carbohydrates like N-acetylglucosamine, peptidoglycan, lipopolysaccharides (LPS), and mannose, as well as sorting proteins (COPI/COPII). Gene expression analyses indicated that <em>NdLTL1</em> exhibits the highest expression levels in cardiac tissues and significant upregulation in gills following exposure to <em>Vibrio parahaemolyticus</em>. Recombinant NdLTL1 expressed in <em>Escherichia coli</em> was shown to bind multiple bacterial strains and exhibit calcium-dependent agglutination properties. Enzyme-linked immunosorbent assay (ELISA) confirmed concentration-dependent carbohydrate binding, particularly rapid for LPS. <em>In vitro</em> experiments suggested that recombinant NdLTL1 may promote bacterial growth under nutrient-limited conditions while potentially triggering immune defenses indirectly.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"157 ","pages":"Article 110116"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825000051","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates an L-type lectin, NdLTL1, derived from Neocaridina denticulata sinensis, emphasizing its role in immune defense through carbohydrate binding and bacterial agglutination. Bioinformatics analysis identified 179 lectin sequences, leading to subsequent investigations into the structure and function of NdLTL1. The open reading frame (ORF) of NdLTL1 spans 966 bp and encodes a protein consisting of 321 amino acids (36.25 kDa), which features a signal peptide, a transmembrane domain and Lectin_leg-like domain. Three-dimensional modeling revealed three antiparallel β-sheets characteristic of Lectin_leg-like domain, confirming evolutionary links with proteins such as VIP36. Protein-carbohydrate and protein-protein interaction studies showed that NdLTL1 binds to both carbohydrates like N-acetylglucosamine, peptidoglycan, lipopolysaccharides (LPS), and mannose, as well as sorting proteins (COPI/COPII). Gene expression analyses indicated that NdLTL1 exhibits the highest expression levels in cardiac tissues and significant upregulation in gills following exposure to Vibrio parahaemolyticus. Recombinant NdLTL1 expressed in Escherichia coli was shown to bind multiple bacterial strains and exhibit calcium-dependent agglutination properties. Enzyme-linked immunosorbent assay (ELISA) confirmed concentration-dependent carbohydrate binding, particularly rapid for LPS. In vitro experiments suggested that recombinant NdLTL1 may promote bacterial growth under nutrient-limited conditions while potentially triggering immune defenses indirectly.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.