Cellular Partners of Tobamoviral Movement Proteins.

IF 5.6 2区 生物学 International Journal of Molecular Sciences Pub Date : 2025-01-05 DOI:10.3390/ijms26010400
Natalia M Ershova, Kamila A Kamarova, Ekaterina V Sheshukova, Tatiana V Komarova
{"title":"Cellular Partners of Tobamoviral Movement Proteins.","authors":"Natalia M Ershova, Kamila A Kamarova, Ekaterina V Sheshukova, Tatiana V Komarova","doi":"10.3390/ijms26010400","DOIUrl":null,"url":null,"abstract":"<p><p>The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general. Briefly, MP binds the viral genome, delivers it to the plasmodesmata (PD) and mediates its intercellular transfer. To implement the transport function, MP interacts with diverse cellular factors. Each of these cellular proteins has its own function, which could be different under normal conditions and upon viral infection. Here, we summarize the data available at present on the plethora of cellular factors that were identified as tobamoviral MP partners and analyze the role of these interactions in infection development.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26010400","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The size of viral genomes is limited, thus the majority of encoded proteins possess multiple functions. The main function of tobamoviral movement protein (MP) is to perform plasmodesmata gating and mediate intercellular transport of the viral RNA. MP is a remarkable example of a protein that, in addition to the initially discovered and most obvious function, carries out numerous activities that are important both for the manifestation of its key function and for successful and productive infection in general. Briefly, MP binds the viral genome, delivers it to the plasmodesmata (PD) and mediates its intercellular transfer. To implement the transport function, MP interacts with diverse cellular factors. Each of these cellular proteins has its own function, which could be different under normal conditions and upon viral infection. Here, we summarize the data available at present on the plethora of cellular factors that were identified as tobamoviral MP partners and analyze the role of these interactions in infection development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多巴病毒运动蛋白的细胞伴侣。
病毒基因组的大小是有限的,因此大多数编码蛋白具有多种功能。多巴病毒运动蛋白(MP)的主要功能是执行胞间连丝门控和介导病毒RNA的细胞间转运。MP是一个显著的例子,它是一种蛋白质,除了最初发现的最明显的功能外,还进行了许多活动,这些活动对其关键功能的表现以及成功和生产性感染都很重要。简单地说,MP结合病毒基因组,将其传递到胞间连丝(PD)并介导其细胞间转移。为了实现转运功能,MP与多种细胞因子相互作用。每一种细胞蛋白都有自己的功能,在正常情况下和病毒感染时可能会有所不同。在这里,我们总结了目前关于被确定为托巴莫病毒MP伴侣的大量细胞因子的可用数据,并分析了这些相互作用在感染发展中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection. De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy-Case Report and Literature Review. Application of Synthetic Microbial Communities of Kalidium schrenkianum in Enhancing Wheat Salt Stress Tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1