Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD).

IF 5.6 2区 生物学 International Journal of Molecular Sciences Pub Date : 2025-01-20 DOI:10.3390/ijms26020847
Susie Lee, Eung-Won Kim, Hae-Ri Lee, Sun-Ung Lim, Chan Kwon Jung, Young-Ju Kang, Gyung-Ah Jung, Il-Hoan Oh
{"title":"Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD).","authors":"Susie Lee, Eung-Won Kim, Hae-Ri Lee, Sun-Ung Lim, Chan Kwon Jung, Young-Ju Kang, Gyung-Ah Jung, Il-Hoan Oh","doi":"10.3390/ijms26020847","DOIUrl":null,"url":null,"abstract":"<p><p>The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene. The IDO-1-inducing potential of miR-4662a was conserved across primary MSCs from various donors and sources but exhibited variability. Notably, iPSC-derived MSCs (iMSCs) demonstrated superior IDO-1 induction and immune-modulatory efficacy compared with their donor-matched primary MSCs. Accordingly, iMSCs expressing miR-4662a (4662a/iMSC) exhibited stronger suppressive effects on T-cell proliferation and more potent suppressive effects on graft-versus-host disease (GVHD), improving survival rates and reducing tissue damage in the liver and gut. Our results point to the therapeutic potential of standardized, off-the-shelf 4662a/iMSC as a robust immune-modulating cell therapy for GVHD.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26020847","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The immune-modulatory effects of mesenchymal stromal cells (MSCs) are widely used to treat inflammatory disorders, with indoleamine 2,4-dioxygenase-1 (IDO-1) playing a pivotal role in suppressing stimulated T-cell proliferation. Taking that three-dimensional (3D) cultures enhance MSCs' anti-inflammatory properties compared with two-dimensional (2D) cultures, the differentially expressed miRNAs were examined. Thus, we identified hsa-miR-4662a-5p (miR-4662a) as a key inducer of IDO-1 via its suppression of bridging integrator-1 (BIN-1), a negative regulator of the IDO-1 gene. The IDO-1-inducing potential of miR-4662a was conserved across primary MSCs from various donors and sources but exhibited variability. Notably, iPSC-derived MSCs (iMSCs) demonstrated superior IDO-1 induction and immune-modulatory efficacy compared with their donor-matched primary MSCs. Accordingly, iMSCs expressing miR-4662a (4662a/iMSC) exhibited stronger suppressive effects on T-cell proliferation and more potent suppressive effects on graft-versus-host disease (GVHD), improving survival rates and reducing tissue damage in the liver and gut. Our results point to the therapeutic potential of standardized, off-the-shelf 4662a/iMSC as a robust immune-modulating cell therapy for GVHD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立表达 hsa-miR-4662a-5p 的 iPSC 衍生间充质干细胞,以增强对移植物抗宿主病(GVHD)的免疫调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
10.70%
发文量
13472
审稿时长
1.7 months
期刊介绍: The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).
期刊最新文献
Establishment of iPSC-Derived MSCs Expressing hsa-miR-4662a-5p for Enhanced Immune Modulation in Graft-Versus-Host Disease (GVHD). Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection. De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy-Case Report and Literature Review. Application of Synthetic Microbial Communities of Kalidium schrenkianum in Enhancing Wheat Salt Stress Tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1