A reactive oxygen species-responsive hydrogel loaded with Apelin-13 promotes the repair of spinal cord injury by regulating macrophage M1/M2 polarization and neuroinflammation.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-01-10 DOI:10.1186/s12951-024-02978-4
Zhiyue Li, Qun Zhao, Jiahui Zhou, Yuyan Li, Yifan Zheng, Linxi Chen
{"title":"A reactive oxygen species-responsive hydrogel loaded with Apelin-13 promotes the repair of spinal cord injury by regulating macrophage M1/M2 polarization and neuroinflammation.","authors":"Zhiyue Li, Qun Zhao, Jiahui Zhou, Yuyan Li, Yifan Zheng, Linxi Chen","doi":"10.1186/s12951-024-02978-4","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a chronic condition whereby persistent aberrant macrophage activation hinders the repair process. During acute trauma, dominant M1 macrophages produce high levels of reactive oxygen species (ROS), leading to increased apoptosis in neurons, glial cells, and oligodendrocytes. This study investigated the specific effects of a ROS-responsive hydrogel loaded with Apelin-13 (Apelin-13@ROS-hydrogel) on macrophage polarization and neuroinflammation, thereby exploring its role in boosting SCI repair. Apelin-13@ROS-hydrogel was prepared, and its ROS-scavenging capacities were evaluated using DPPH, H<sub>2</sub>O<sub>2</sub>, and ·O<sub>2</sub>- assays. The effects of Apelin-13@ROS-hydrogel on macrophage polarization, inflammatory mediators and oxidative stress were assessed in LPS-pre-treated microglia BV2 cells and an SCI rat model. Apelin-13 was downregulated in SCI rats. Treatment with Apelin-13 improved functional recovery and reduced inflammatory factors and M1 markers but increased the M2 marker Arg-1. Apelin-13@ROS-hydrogel showed significantly higher ROS-scavenging capacities compared to the control hydrogel. Apelin-13@ROS-hydrogel decreased pro-inflammatory mediators and increased anti-inflammatory mediators in BV2 cells. Apelin-13@ROS-hydrogel enhanced the healing process and neurological functions, reducing inflammatory factors and M1 markers while increasing Arg-1 levels by day 28 in SCI rats. Collectively, Apelin-13 enhances SCI repair through macrophage regulation, M1/M2 polarization, and neuroinflammation. The ROS-responsive hydrogel further amplifies these effects, offering a promising therapeutic strategy for SCI.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"12"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02978-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is a chronic condition whereby persistent aberrant macrophage activation hinders the repair process. During acute trauma, dominant M1 macrophages produce high levels of reactive oxygen species (ROS), leading to increased apoptosis in neurons, glial cells, and oligodendrocytes. This study investigated the specific effects of a ROS-responsive hydrogel loaded with Apelin-13 (Apelin-13@ROS-hydrogel) on macrophage polarization and neuroinflammation, thereby exploring its role in boosting SCI repair. Apelin-13@ROS-hydrogel was prepared, and its ROS-scavenging capacities were evaluated using DPPH, H2O2, and ·O2- assays. The effects of Apelin-13@ROS-hydrogel on macrophage polarization, inflammatory mediators and oxidative stress were assessed in LPS-pre-treated microglia BV2 cells and an SCI rat model. Apelin-13 was downregulated in SCI rats. Treatment with Apelin-13 improved functional recovery and reduced inflammatory factors and M1 markers but increased the M2 marker Arg-1. Apelin-13@ROS-hydrogel showed significantly higher ROS-scavenging capacities compared to the control hydrogel. Apelin-13@ROS-hydrogel decreased pro-inflammatory mediators and increased anti-inflammatory mediators in BV2 cells. Apelin-13@ROS-hydrogel enhanced the healing process and neurological functions, reducing inflammatory factors and M1 markers while increasing Arg-1 levels by day 28 in SCI rats. Collectively, Apelin-13 enhances SCI repair through macrophage regulation, M1/M2 polarization, and neuroinflammation. The ROS-responsive hydrogel further amplifies these effects, offering a promising therapeutic strategy for SCI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Engineered biomimetic cisplatin-polyphenol nanocomplex for chemo-immunotherapy of glioblastoma by inducing pyroptosis. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. A reactive oxygen species-responsive hydrogel loaded with Apelin-13 promotes the repair of spinal cord injury by regulating macrophage M1/M2 polarization and neuroinflammation. Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming. Genetically engineered biomimetic ATP-responsive nanozyme for the treatment of cardiac fibrosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1