{"title":"Whole-cell aptamer-based techniques for rapid bacterial detection: Alternatives to traditional methods.","authors":"Juliette Nourry, Pauline Chevalier, Emmanuelle Laurenceau, Xavier Cattoen, Xavier Bertrand, Basile Peres, Farid Oukacine, Eric Peyrin, Luc Choisnard","doi":"10.1016/j.jpba.2025.116661","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116661"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2025.116661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the spread of bacterial infectious diseases is a major public health issue, particularly in view of the pandemic of bacterial resistance to antibiotics. In this context, the detection and identification of pathogenic bacteria is a prerequisite for the implementation of control measures. Current reference methods are mainly based on culture methods, which generate a delay in obtaining a result and requires equipment. Consequently, focusing on the detection of the whole bacterium represents a very attractive alternative, since no culture is required. Several techniques have already been deployed to identify whole-cell bacteria. In recent decades, growing interest in nucleic acid aptamers has emerged as a viable alternative to antibodies as recognition elements, offering preferable stability, cost-efficiency, good specificity and affinity. This review explores current alternative methods for the detection of whole-cell bacteria, with particular emphasis on aptamer-based assays. These assays have shown promising results in various transduction mechanisms, including optical, electrochemical, and mechanical approaches, enhancing their versatility in different diagnostic platforms. The integration of aptamers in these detection methods offers rapid, sensitive, versatile and portable solutions for pathogen identification, positioning them as valuable tools in the fight against bacterial infections.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.