{"title":"Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks.","authors":"Elżbieta Doluk, Anna Rudawska, Stanisław Legutko","doi":"10.3390/ma18010206","DOIUrl":null,"url":null,"abstract":"<p><p>A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research. This paper evaluates the surface quality of II- and III-layer sandwich structures that are a combination of aluminum alloy and CFRP (Carbon Fiber-Reinforced Polymer) after the machining. The effect of depth of cut (a<sub>e</sub>) on the surface roughness of the II- and III-layer sandwich structures after the milling process was investigated. The surface homogeneity was also investigated. It was expressed by the I<sub>Ra</sub> and I<sub>Rz</sub> surface homogeneity indices formed from the Ra and Rz surface roughness parameters measured separately for each layer of the materials forming the sandwich structure. It was noted that the lowest surface roughness (Ra = 0.03 µm and Rz = 0.20 µm) was obtained after the milling of the II-layer sandwich structure using a<sub>e</sub> = 0.5 mm, while the highest was obtained for the III-layer structure and a<sub>e</sub> = 1.0 mm (Ra = 1.73 µm) and a<sub>e</sub> = 0.5 mm (Rz = 10.98 µm). The most homogeneous surfaces were observed after machining of the II-layer structure and using the depth of cut a<sub>e</sub> = 2.0 mm (I<sub>Ra</sub> = 0.28 and I<sub>Rz</sub> = 0.06), while the least homogeneous surfaces were obtained after milling of the III-layer structure and the depths of cut a<sub>e</sub> = 0.5 mm (I<sub>Ra</sub> = 0.64) and a<sub>e</sub> = 2.0 mm (I<sub>Rz</sub> = 0.78). The obtained results may be relevant to surface engineering and combining hybrid sandwich structures with other materials.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18010206","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research. This paper evaluates the surface quality of II- and III-layer sandwich structures that are a combination of aluminum alloy and CFRP (Carbon Fiber-Reinforced Polymer) after the machining. The effect of depth of cut (ae) on the surface roughness of the II- and III-layer sandwich structures after the milling process was investigated. The surface homogeneity was also investigated. It was expressed by the IRa and IRz surface homogeneity indices formed from the Ra and Rz surface roughness parameters measured separately for each layer of the materials forming the sandwich structure. It was noted that the lowest surface roughness (Ra = 0.03 µm and Rz = 0.20 µm) was obtained after the milling of the II-layer sandwich structure using ae = 0.5 mm, while the highest was obtained for the III-layer structure and ae = 1.0 mm (Ra = 1.73 µm) and ae = 0.5 mm (Rz = 10.98 µm). The most homogeneous surfaces were observed after machining of the II-layer structure and using the depth of cut ae = 2.0 mm (IRa = 0.28 and IRz = 0.06), while the least homogeneous surfaces were obtained after milling of the III-layer structure and the depths of cut ae = 0.5 mm (IRa = 0.64) and ae = 2.0 mm (IRz = 0.78). The obtained results may be relevant to surface engineering and combining hybrid sandwich structures with other materials.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.