In vitro effect of hCG on cryptorchid patients' gubernacular cells: a predictive model for adjuvant personalized therapy.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-01-10 DOI:10.1186/s12964-024-01979-y
Andrea Errico, Giulia Ambrosini, Sara Vinco, Emanuela Bottani, Elisa Dalla Pozza, Nunzio Marroncelli, Jessica Brandi, Daniela Cecconi, Ilaria Decimo, Filippo Migliorini, Nicola Zampieri, Ilaria Dando
{"title":"In vitro effect of hCG on cryptorchid patients' gubernacular cells: a predictive model for adjuvant personalized therapy.","authors":"Andrea Errico, Giulia Ambrosini, Sara Vinco, Emanuela Bottani, Elisa Dalla Pozza, Nunzio Marroncelli, Jessica Brandi, Daniela Cecconi, Ilaria Decimo, Filippo Migliorini, Nicola Zampieri, Ilaria Dando","doi":"10.1186/s12964-024-01979-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cryptorchidism is the absence of one or both testicles in the scrotum at birth, being a risk factor for testis cancer and infertility. The most effective method to treat cryptorchidism is orchiopexy, followed by human chorionic gonadotropin (hCG) therapy; however, a portion of treated patients do not show a significant improvement in testis volume and vascularization after adjuvant therapy.</p><p><strong>Methods: </strong>In this study, we generated an in vitro model to predict the patient response to hCG by cultivating and treating primary cells derived from five cryptorchid patients' biopsies of gubernaculum testis, the ligament that connects the testicle to the scrotum. On these in vitro cultured cells, we analyzed the effect of hCG on cell proliferation, tubular structure formation, cellular respiration, reactive oxygen species content, and proteome.</p><p><strong>Results: </strong>We demonstrate that in vitro hCG stimulates gubernacular cells to proliferate and form vessel-like structures to a different extent among the five cryptorchid patients' cells, with a decrease in oxygen consumption and reactive oxygen species generation. Furthermore, from the proteomic analysis, we show that hCG regulates the intra- and extra-cellular organization of gubernacular cells together with a massive regulation of the antioxidant response.</p><p><strong>Conclusions: </strong>Hereby, we characterized the cellular and molecular effects of hCG, demonstrating that the diverse patient response to hCG may be ascribable to their age since young patients better respond in vitro to the hormone, supporting a prompt surgical procedure and subsequent therapy.</p><p><strong>Trial registration: </strong>The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Ethics Committee of \"Azienda Ospedaliera Universitaria Integrata\" (AOUI) of Verona, Italy (\"ANDRO-PRO\", protocol code N. 4206 CESC of 26 April 2023).</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"19"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01979-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cryptorchidism is the absence of one or both testicles in the scrotum at birth, being a risk factor for testis cancer and infertility. The most effective method to treat cryptorchidism is orchiopexy, followed by human chorionic gonadotropin (hCG) therapy; however, a portion of treated patients do not show a significant improvement in testis volume and vascularization after adjuvant therapy.

Methods: In this study, we generated an in vitro model to predict the patient response to hCG by cultivating and treating primary cells derived from five cryptorchid patients' biopsies of gubernaculum testis, the ligament that connects the testicle to the scrotum. On these in vitro cultured cells, we analyzed the effect of hCG on cell proliferation, tubular structure formation, cellular respiration, reactive oxygen species content, and proteome.

Results: We demonstrate that in vitro hCG stimulates gubernacular cells to proliferate and form vessel-like structures to a different extent among the five cryptorchid patients' cells, with a decrease in oxygen consumption and reactive oxygen species generation. Furthermore, from the proteomic analysis, we show that hCG regulates the intra- and extra-cellular organization of gubernacular cells together with a massive regulation of the antioxidant response.

Conclusions: Hereby, we characterized the cellular and molecular effects of hCG, demonstrating that the diverse patient response to hCG may be ascribable to their age since young patients better respond in vitro to the hormone, supporting a prompt surgical procedure and subsequent therapy.

Trial registration: The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Ethics Committee of "Azienda Ospedaliera Universitaria Integrata" (AOUI) of Verona, Italy ("ANDRO-PRO", protocol code N. 4206 CESC of 26 April 2023).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Signal integrator function of CXXC5 in Cancer. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1