"The Brain is…": A Survey of the Brain's Many Definitions.

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2025-01-11 DOI:10.1007/s12021-024-09699-x
Taylor Bolt, Lucina Q Uddin
{"title":"\"The Brain is…\": A Survey of the Brain's Many Definitions.","authors":"Taylor Bolt, Lucina Q Uddin","doi":"10.1007/s12021-024-09699-x","DOIUrl":null,"url":null,"abstract":"<p><p>A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain. Utilizing text analytic tools applied to a large sample (> 4 million) of peer-reviewed full-text articles and abstracts, we extracted several thousand phrases of the form 'the brain is…' and identified over a dozen frequently appearing phrases. The most used phrases included metaphors (e.g., the brain as a 'information processor' or 'prediction machine') and descriptions of essential functions (e.g., 'a central organ of stress adaptation') or properties (e.g., 'a highly vascularized organ'). Comparison of these phrases with those involving other bodily organs (e.g. the heart, liver, etc.) highlighted common phrases between the brain and other organs, such as the heart as a 'complex, dynamic system'. However, the brain was unique among organs in the number and diversity of analogies ascribed to it. The results of our analysis underscore the diversity of qualities and functions attributed to the brain in the biomedical literature and suggest a range of conceptualizations that defy unification.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 1","pages":"4"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09699-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain. Utilizing text analytic tools applied to a large sample (> 4 million) of peer-reviewed full-text articles and abstracts, we extracted several thousand phrases of the form 'the brain is…' and identified over a dozen frequently appearing phrases. The most used phrases included metaphors (e.g., the brain as a 'information processor' or 'prediction machine') and descriptions of essential functions (e.g., 'a central organ of stress adaptation') or properties (e.g., 'a highly vascularized organ'). Comparison of these phrases with those involving other bodily organs (e.g. the heart, liver, etc.) highlighted common phrases between the brain and other organs, such as the heart as a 'complex, dynamic system'. However, the brain was unique among organs in the number and diversity of analogies ascribed to it. The results of our analysis underscore the diversity of qualities and functions attributed to the brain in the biomedical literature and suggest a range of conceptualizations that defy unification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“大脑是……”:对大脑诸多定义的调查。
阅读同行评审的神经科学文献的读者经常会遇到这样的表达:“大脑是一个动态系统”,“大脑是一个复杂的网络”,或者“大脑是一个高度代谢的器官”。这些表达试图用一个简单的短语或句子来定义哺乳动物或人类大脑的基本功能和特性,有时使用隐喻或类比。我们试图调查生物医学文献中最常见的“大脑是……”形式的短语,以提供对当前大脑概念化的见解。利用文本分析工具,我们提取了数千个以“大脑是……”为形式的短语,并识别了十几个经常出现的短语。使用最多的短语包括隐喻(例如,大脑是“信息处理器”或“预测机器”)和对基本功能(例如,“适应压力的中心器官”)或特性(例如,“高度血管化的器官”)的描述。将这些短语与涉及其他身体器官(如心脏、肝脏等)的短语进行比较,突出了大脑和其他器官(如心脏是一个“复杂的、动态的系统”)之间的常见短语。然而,在所有器官中,大脑在数量和多样性上都是独一无二的。我们的分析结果强调了生物医学文献中归因于大脑的质量和功能的多样性,并提出了一系列不统一的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Generalized Coupled Matrix Tensor Factorization Method Based on Normalized Mutual Information for Simultaneous EEG-fMRI Data Analysis. Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation. Determination of the Time-frequency Features for Impulse Components in EEG Signals. Blood Flow Velocity Analysis in Cerebral Perforating Arteries on 7T 2D Phase Contrast MRI with an Open-Source Software Tool (SELMA). CDCG-UNet: Chaotic Optimization Assisted Brain Tumor Segmentation Based on Dilated Channel Gate Attention U-Net Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1