Energy, economic, and environmental (3E) impacts assessment of low-grade waste heat recovery in a food dryer incorporating an innovative porous [formula omitted] core heat exchanger
{"title":"Energy, economic, and environmental (3E) impacts assessment of low-grade waste heat recovery in a food dryer incorporating an innovative porous [formula omitted] core heat exchanger","authors":"Behnam Ataeiyan, Shahriar Kouravand, Majid Rasouli","doi":"10.1016/j.psep.2025.01.002","DOIUrl":null,"url":null,"abstract":"This research focused on evaluating the effects on energy consumption, economic aspects, and environmental consequences associated with the utilization of low-grade waste heat recovery (WHR) within a small-scale food drying apparatus known as a laboratory-scale food dryer (LSFD). A regenerative heat exchanger comprising a porous <mml:math altimg=\"si0130.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">Al</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> core resistant to corrosion and rust is used for WHR. The operation duration of the LSFD was considered 10 <mml:math altimg=\"si0131.svg\"><mml:mrow><mml:mi mathvariant=\"italic\">hour</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">day</mml:mi></mml:mrow></mml:math>, and 365 <mml:math altimg=\"si0132.svg\"><mml:mrow><mml:mi mathvariant=\"italic\">day</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">year</mml:mi></mml:mrow></mml:math>. The emission intensity value of 506 <mml:math altimg=\"si0133.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">gCO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">kWh</mml:mi></mml:mrow></mml:math> was taken into account for fossil-fuel-based power generation. Investigations were conducted via the Taguchi optimization method in conjunction with cost-benefit analysis. Results indicated that WHR within LSFD can achieve energy savings ranging from 5.148 to 12.966 <mml:math altimg=\"si0134.svg\"><mml:mrow><mml:mi mathvariant=\"italic\">MWh</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">year</mml:mi></mml:mrow></mml:math> with a saving efficiency of 26.32 %, leading to saving 219.54–552.88 <mml:math altimg=\"si0135.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">USD</mml:mi></mml:mrow><mml:mrow><mml:mn>2023</mml:mn></mml:mrow></mml:msub><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">year</mml:mi></mml:mrow></mml:math> with a payback period of 1.06–2.67 years and 848.36–2136.45 <mml:math altimg=\"si0136.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">USD</mml:mi></mml:mrow><mml:mrow><mml:mn>2023</mml:mn></mml:mrow></mml:msub><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">year</mml:mi></mml:mrow></mml:math> with a payback period of 0.27–0.69 years for the average (0.162 <mml:math altimg=\"si0137.svg\"><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">USD</mml:mi></mml:mrow><mml:mrow><mml:mn>2023</mml:mn></mml:mrow></mml:msub></mml:math>) and maximum (0.626 <mml:math altimg=\"si0138.svg\"><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">USD</mml:mi></mml:mrow><mml:mrow><mml:mn>2023</mml:mn></mml:mrow></mml:msub></mml:math>) electricity prices, respectively. This strategy prevents emitting the 2.61–6.56 <mml:math altimg=\"si0139.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">tCO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>/</mml:mo><mml:mi mathvariant=\"italic\">year</mml:mi></mml:mrow></mml:math> with a mitigation rate of 112.98–284.53 <mml:math altimg=\"si0140.svg\"><mml:msub><mml:mrow><mml:mi mathvariant=\"italic\">kgCO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> with every 1 <mml:math altimg=\"si0141.svg\"><mml:mi>℃</mml:mi></mml:math> rise in temperature of preheated air. <mml:math altimg=\"si0142.svg\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">CO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> emission conversion factors were ultimately presented for diverse parameters.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"78 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2025.01.002","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research focused on evaluating the effects on energy consumption, economic aspects, and environmental consequences associated with the utilization of low-grade waste heat recovery (WHR) within a small-scale food drying apparatus known as a laboratory-scale food dryer (LSFD). A regenerative heat exchanger comprising a porous Al2O3 core resistant to corrosion and rust is used for WHR. The operation duration of the LSFD was considered 10 hour/day, and 365 day/year. The emission intensity value of 506 gCO2/kWh was taken into account for fossil-fuel-based power generation. Investigations were conducted via the Taguchi optimization method in conjunction with cost-benefit analysis. Results indicated that WHR within LSFD can achieve energy savings ranging from 5.148 to 12.966 MWh/year with a saving efficiency of 26.32 %, leading to saving 219.54–552.88 USD2023/year with a payback period of 1.06–2.67 years and 848.36–2136.45 USD2023/year with a payback period of 0.27–0.69 years for the average (0.162 USD2023) and maximum (0.626 USD2023) electricity prices, respectively. This strategy prevents emitting the 2.61–6.56 tCO2/year with a mitigation rate of 112.98–284.53 kgCO2 with every 1 ℃ rise in temperature of preheated air. CO2 emission conversion factors were ultimately presented for diverse parameters.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.